We propose an ambitious program of collaborative research to identify and characterize molecular mechanisms responsible for altered programs of inflammatory gene expression that contribute to insulin resistance. We will capitalize on our recent discoveries of unexpected roles of GPS2 and the nuclear receptor co-repressors NCoR and SMRT in regulation of inflammatory signaling pathways in macrophages and adipocytes. We will extend studies of novel mechanisms mediating the recruitment of pro-inflammatory macrophages into adipose tissue that have clear translational potential. We will utilize newly developed technologies to characterize the genomic locations and functions of PPARy in adipose tissue macrophages in vivo to determine mechanisms by which macrophage PPARy contributes to insulin-sensitizing functions of thiazolidinediones. We will investigate the roles o 3 dimensional chromatin interactions and non-coding RNAs in positive and negative regulation of inflammatory gene expression. Overall, the proposed studies are expected to lead to new insights into mechanisms underlying obesity-associated insulin resistance that will facilitate development of new approaches for the prevention and treatment of type 2 diabetes.

Public Health Relevance

The proposed studies will significantly advance our understanding of mechanisms that regulate the initiation, amplification and resolution of pathogenic forms of inflammation that contribute to insulin resistance and the development of type 2 diabetes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Program Projects (P01)
Project #
2P01DK074868-06
Application #
8269179
Study Section
Special Emphasis Panel (ZDK1-GRB-6 (J1))
Program Officer
Margolis, Ronald N
Project Start
2006-04-01
Project End
2017-04-30
Budget Start
2012-05-25
Budget End
2013-04-30
Support Year
6
Fiscal Year
2012
Total Cost
$1,765,823
Indirect Cost
$625,970
Name
University of California San Diego
Department
Other Basic Sciences
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Franck, Niclas; Maris, Michael; Nalbandian, Sarah et al. (2014) Knock-down of IL-1Ra in obese mice decreases liver inflammation and improves insulin sensitivity. PLoS One 9:e107487
Lee, Yun Sok; Kim, Jung-whan; Osborne, Olivia et al. (2014) Increased adipocyte O2 consumption triggers HIF-1?, causing inflammation and insulin resistance in obesity. Cell 157:1339-52
Oh, Da Young; Walenta, Evelyn; Akiyama, Taro E et al. (2014) A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat Med 20:942-7
Bhargava, Vipul; Head, Steven R; Ordoukhanian, Phillip et al. (2014) Technical variations in low-input RNA-seq methodologies. Sci Rep 4:3678
Suh, Jae Myoung; Jonker, Johan W; Ahmadian, Maryam et al. (2014) Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature 513:436-9
McNelis, Joanne C; Olefsky, Jerrold M (2014) Macrophages, immunity, and metabolic disease. Immunity 41:36-48
Johnson, Andrew M F; Olefsky, Jerrold M (2013) The origins and drivers of insulin resistance. Cell 152:673-84
Dinasarapu, Ashok Reddy; Gupta, Shakti; Ram Maurya, Mano et al. (2013) A combined omics study on activated macrophages--enhanced role of STATs in apoptosis, immunity and lipid metabolism. Bioinformatics 29:2735-43
Bhargava, Vipul; Ko, Pang; Willems, Erik et al. (2013) Quantitative transcriptomics using designed primer-based amplification. Sci Rep 3:1740
Spann, Nathanael J; Glass, Christopher K (2013) Sterols and oxysterols in immune cell function. Nat Immunol 14:893-900

Showing the most recent 10 out of 69 publications