Core B will provide database infrastructure and coordinate data deposition to public resources such as INSDC (the International Nucleotide Sequence Database Collaboration), as well as coordinate the data for the project overall to facilitate comparison with other datasets and deployment of advanced algorithms. It will build on the Knight lab's extensive experience with meta-analysis, sequence databases, and data visualization to provide these methods to Project 1, Project 2, and Project 3, and will work closely with Core A to mirror metabolomics data and integrate metabolomics datasets with the rest of the multi-omic data to be collected. Core B has three Aims.
Aim 1 -organize the data and metadata collected in Project 1 from mice and Project 2 from humans, curate these datasets, and ensure that analyses are reproducible in an automated fashion using virtual machines.
Aim 2 -deposit the data and metadata in standards-compliant form to INSDC, the Gene Expression Omnibus, and other resources (e.g., metabolomics repositories) as they emerge.
Aim 3 -Through analyses of existing microbiome datasets, provide best-practices recommendations to investigators in Project 1 and Project 2 to optimize experimental design. Core B will build on an extensive multi-omics data repository funded by multiple sources that is able to accommodate the types of data to be collected in the project overall, including links between human subjects with defined family relationships (e.g. dizygotic twins), humanized gnotobiotic mice colonized with strains derived from these human subjects, timeseries study designs in both humans and mice, combinations of data at multiple levels including 16S rRNA gene sequencing, RNA-Seq, and metabolomics, and other advanced features of this complex project. A key component of our approach is to enable investigators in the laboratory collecting the datasets to perform their own first-pass analyses while at the same time making the data available more broadly within the project for additional advanced analyses, such as those being developed in Project 3, to be applied, and also making the data available to the public in a relatively user-friendly form to supplement public deposition in permanent government-backed sequence data repositories.

Public Health Relevance

Efforts to characterize the human gut microbiome in health and disease are producing vast amounts of data about its organismal and gene content and variations. Storing this complex data in a database and depositing it for public use is critical for making the information generally available. We will organize the data and deposit it in major sequence repositories in order to support efforts to gain understanding about the role of microbes in obesity, and guiding preclinical tests for microbiome-directed therapeutics.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Washington University
Saint Louis
United States
Zip Code
Seedorf, Henning; Griffin, Nicholas W; Ridaura, Vanessa K et al. (2014) Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 159:253-66
Faith, Jeremiah J; Ahern, Philip P; Ridaura, Vanessa K et al. (2014) Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci Transl Med 6:220ra11
Langille, Morgan G I; Zaneveld, Jesse; Caporaso, J Gregory et al. (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814-21
Ridaura, Vanessa K; Faith, Jeremiah J; Rey, Federico E et al. (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214
Smith, Michelle I; Yatsunenko, Tanya; Manary, Mark J et al. (2013) Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339:548-54
Bokulich, Nicholas A; Subramanian, Sathish; Faith, Jeremiah J et al. (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57-9
Faith, Jeremiah J; Guruge, Janaki L; Charbonneau, Mark et al. (2013) The long-term stability of the human gut microbiota. Science 341:1237439
Rey, Federico E; Gonzalez, Mark D; Cheng, Jiye et al. (2013) Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc Natl Acad Sci U S A 110:13582-7
Ravussin, Yann; Koren, Omry; Spor, Ayme et al. (2012) Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity (Silver Spring) 20:738-47
Kau, Andrew L; Ahern, Philip P; Griffin, Nicholas W et al. (2011) Human nutrition, the gut microbiome and the immune system. Nature 474:327-36

Showing the most recent 10 out of 49 publications