The NLR (nucleotide-binding domain, leucine-rich repeat protein, also known as NOD-like receptor) family is a group of cytosolic proteins that detect intracellular microbes. Within this gene family, the N0D2 gene has received the most attention due its genetic association with inflammatory bowel disease (IBD). Furthermore, we and others have shown that inflammasome-associated NLRs such as NLRP3 and NLRP6, as well as inflammasome components can protect against experimental colitis and alter the microbiome, indicating a more expanded relevance of this family with colitis. Most recently a subgroup of NLRs is found to inhibit NFkappaB activation and impact experimental colitis. We and others showed that NLRP12 reduces colitis by suppressing NF-kappaB activation. This indicates for the first time that NLRs can attenuate colitis by negatively impacting NF-kappB. NLRP12 suppresses inflammation by causing the proteasome-mediated degradation of NIK (NF-kappaB inducing kinase), which is critical for non-canonical NF-kappaB activation. Others have shown that NLRP12 negatively impacts the canonical NF-kappaB. Furthermore both groups showed that NLRP12 downregulates MAP kinases, and the presence of NLRP12 attenuates ERK phosphorylation. In addition to NLRP12 we have recently identified NLRC3 as another member that inhibits TLR signaling by reducing K63- ubiquitination of TRAF6 and preventing canonical NF-kappa kappa activation. This inhibition of NF-kappa kappa is accompanied by attenuated LPS response. This project will assess the roles and mechanisms by which these two anti-inflammatory NLRs affect a number of colitis models and profile the expression of these proteins and their downstream effects in samples from colitis patients vs. controls.

Public Health Relevance

The NLR family of innate immune sensors are critical regulator of inflammatory response. Mutations in this family has been linked to Crohns'disease. The work here focuses on two novel NLR proteins, both of which protect against experimental colitis. We will additionally explore their roles in human colitis.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-6)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Davison, James M; Lickwar, Colin R; Song, Lingyun et al. (2017) Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor Hepatocyte nuclear factor 4 alpha. Genome Res 27:1195-1206
Leulier, Fran├žois; MacNeil, Lesley T; Lee, Won-Jae et al. (2017) Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health. Cell Metab 25:522-534
Sartor, R Balfour; Wu, Gary D (2017) Roles for Intestinal Bacteria, Viruses, and Fungi in Pathogenesis of Inflammatory Bowel Diseases and Therapeutic Approaches. Gastroenterology 152:327-339.e4
Chen, Liang; Wilson, Justin E; Koenigsknecht, Mark J et al. (2017) NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth. Nat Immunol 18:541-551
Koblansky, A Alicia; Truax, Agnieszka D; Liu, Rongrong et al. (2016) The Innate Immune Receptor NLRX1 Functions as a Tumor Suppressor by Reducing Colon Tumorigenesis and Key Tumor-Promoting Signals. Cell Rep 14:2562-75
Fung, Thomas C; Bessman, Nicholas J; Hepworth, Matthew R et al. (2016) Lymphoid-Tissue-Resident Commensal Bacteria Promote Members of the IL-10 Cytokine Family to Establish Mutualism. Immunity 44:634-646
Abdalla, Maisa; Sheikh, Shehzad Z (2016) Harnessing the Power of Posttranscriptional Gene Silencing in Crohn's Disease. Clin Transl Gastroenterol 7:e160
Wu, Cong; Sartor, R Balfour; Huang, Kehe et al. (2016) Transient activation of mucosal effector immune responses by resident intestinal bacteria in normal hosts is regulated by interleukin-10 signalling. Immunology 148:304-14
Simon, Jeremy M; Davis, James P; Lee, Saangyoung E et al. (2016) Alterations to chromatin in intestinal macrophages link IL-10 deficiency to inappropriate inflammatory responses. Eur J Immunol 46:1912-25
Weiser, Matthew; Sheikh, Shehzad; Kochar, Bharati et al. (2016) O-004?Analysis of Chromatin and Transcriptional Profiles in Crohn's Disease Reveals Molecular Subclasses and Highlights Functional Regulatory Regions Implicated in Disease. Inflamm Bowel Dis 22 Suppl 1:S1-2

Showing the most recent 10 out of 23 publications