The mission of the Neuropathology and Animal Behavior Core will be to provide the projects of the NIEHS Center with well-characterized autopsy brain material from human PD cases as well as with transgenic (tg) animal models expressing a-synuclein (a-syn), DJ-1, Parkin and PINK1 for neuropathological, molecular, biochemical and behavioral studies. The Core will provide support with human tissues from PD patients and animal models of PD to Projects 1, 2, and 3; support behavioral studies in Project 3;and help with survival/apoptosis/necrosis analysis of human embryonic stem cell (hESC)-derived developing neurons for Project 4. The Core has developed state of the art techniques for neuropathological analysis of neurodegeneration, biochemical analysis of misfolded protein accumulation, and behavioral analysis of motor and cognitive alterations. Moreover, we have developed unique animal models of PD in which to test and screen new molecular pathways and small molecules. Please note that a human clinical component, as defined in the NIEHS Center RFA, is contained within this Core.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Program Projects (P01)
Project #
5P01ES016738-05
Application #
8377587
Study Section
Special Emphasis Panel (ZES1-LWJ-G)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
5
Fiscal Year
2012
Total Cost
$111,240
Indirect Cost
$49,990
Name
Sanford-Burnham Medical Research Institute
Department
Type
DUNS #
020520466
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Oh, Chang-Ki; Sultan, Abdullah; Platzer, Joseph et al. (2017) S-Nitrosylation of PINK1 Attenuates PINK1/Parkin-Dependent Mitophagy in hiPSC-Based Parkinson's Disease Models. Cell Rep 21:2171-2182
Singec, Ilyas; Crain, Andrew M; Hou, Junjie et al. (2016) Quantitative Analysis of Human Pluripotency and Neural Specification by In-Depth (Phospho)Proteomic Profiling. Stem Cell Reports 7:527-542
Qu, Zhe; Greenlief, C Michael; Gu, Zezong (2016) Quantitative Proteomic Approaches for Analysis of Protein S-Nitrosylation. J Proteome Res 15:1-14
Spiering, Sean; Davidovics, Herman; Bushway, Paul J et al. (2015) High content screening for modulators of cardiac differentiation in human pluripotent stem cells. Methods Mol Biol 1263:43-61
Okamoto, Shu-ichi; Lipton, Stuart A (2015) S-Nitrosylation in neurogenesis and neuronal development. Biochim Biophys Acta 1850:1588-93
Satoh, Takumi; Stalder, Romain; McKercher, Scott R et al. (2015) Nrf2 and HSF-1 Pathway Activation via Hydroquinone-Based Proelectrophilic Small Molecules is Regulated by Electrochemical Oxidation Potential. ASN Neuro 7:
Zhou, Hui; Qu, Zhe; Mossine, Valeri V et al. (2014) Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells. PLoS One 9:e113531
Okamoto, Shu-Ichi; Nakamura, Tomohiro; Cieplak, Piotr et al. (2014) S-nitrosylation-mediated redox transcriptional switch modulates neurogenesis and neuronal cell death. Cell Rep 8:217-28
Chan, Shing Fai; Sances, Sam; Brill, Laurence M et al. (2014) ATM-dependent phosphorylation of MEF2D promotes neuronal survival after DNA damage. J Neurosci 34:4640-53
Qu, Zhe; Meng, Fanjun; Zhou, Hui et al. (2014) NitroDIGE analysis reveals inhibition of protein S-nitrosylation by epigallocatechin gallates in lipopolysaccharide-stimulated microglial cells. J Neuroinflammation 11:17

Showing the most recent 10 out of 61 publications