The mission of the High-Throughput Screening and Chemical Library (HTSCL) Core is to support the high-throughput screening, medicinal chemistry, automated microscopy and image analysis needs of the individual Projects. The Burnham Institute for Medical Research (BIMR) has collaborated with neighboring academic institutions to establish the San Diego Center for Chemical Genomics (SDCCG). The SDCCG will provide the projects access to state-of-the-art robotics and instrumentation for HTS for the purpose of discovering novel therapeutics for Parkinson's disease (PD), which will be a major function of Core E. HTS will be conducted in vitro against biochemical targets or cellular responses (Projects 2 3, and 4). A second major function of the core will be the automated acquisition and analysis of images of cells to quantify marker or phenotypic responses (Projects 2 and 3) using the sophisticated and proprietary automated microscopy platforms and algorithms developed within the center. In addition, the core will assume the responsibility of converting primary validated hits to leads through medicinal chemistry and nuclear magnetic resonance (NMR)-based and computational modeling strategies for compound optimization (Projects 2, 3, and 4). Core E will provide these functions for the Parkinson's Disease (PD) researchers in this Center.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Program Projects (P01)
Project #
5P01ES016738-05
Application #
8377588
Study Section
Special Emphasis Panel (ZES1-LWJ-G)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
5
Fiscal Year
2012
Total Cost
$137,486
Indirect Cost
$61,783
Name
Sanford-Burnham Medical Research Institute
Department
Type
DUNS #
020520466
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Singec, Ilyas; Crain, Andrew M; Hou, Junjie et al. (2016) Quantitative Analysis of Human Pluripotency and Neural Specification by In-Depth (Phospho)Proteomic Profiling. Stem Cell Reports 7:527-42
Qu, Zhe; Greenlief, C Michael; Gu, Zezong (2016) Quantitative Proteomic Approaches for Analysis of Protein S-Nitrosylation. J Proteome Res 15:1-14
Satoh, Takumi; Stalder, Romain; McKercher, Scott R et al. (2015) Nrf2 and HSF-1 Pathway Activation via Hydroquinone-Based Proelectrophilic Small Molecules is Regulated by Electrochemical Oxidation Potential. ASN Neuro 7:
Okamoto, Shu-ichi; Lipton, Stuart A (2015) S-Nitrosylation in neurogenesis and neuronal development. Biochim Biophys Acta 1850:1588-93
Spiering, Sean; Davidovics, Herman; Bushway, Paul J et al. (2015) High content screening for modulators of cardiac differentiation in human pluripotent stem cells. Methods Mol Biol 1263:43-61
Jeon, Gye Sun; Nakamura, Tomohiro; Lee, Jeong-Seon et al. (2014) Potential effect of S-nitrosylated protein disulfide isomerase on mutant SOD1 aggregation and neuronal cell death in amyotrophic lateral sclerosis. Mol Neurobiol 49:796-807
Chan, Shing Fai; Sances, Sam; Brill, Laurence M et al. (2014) ATM-dependent phosphorylation of MEF2D promotes neuronal survival after DNA damage. J Neurosci 34:4640-53
Choi, Min Sik; Nakamura, Tomohiro; Cho, Seung-Je et al. (2014) Transnitrosylation from DJ-1 to PTEN attenuates neuronal cell death in parkinson's disease models. J Neurosci 34:15123-31
Okamoto, Shu-Ichi; Nakamura, Tomohiro; Cieplak, Piotr et al. (2014) S-nitrosylation-mediated redox transcriptional switch modulates neurogenesis and neuronal cell death. Cell Rep 8:217-28
Zhu, Saiyong; Ambasudhan, Rajesh; Sun, Woong et al. (2014) Small molecules enable OCT4-mediated direct reprogramming into expandable human neural stem cells. Cell Res 24:126-9

Showing the most recent 10 out of 59 publications