"Project D: Core Resources" represents the physical and administrative core of the Program Project. Major expenses related to general infrastructure support are included In this section in order to centralize the support activities on which all of the other projects rely. The major items that represent the bulk of the budget for this section include the service contracts on the electron microscopes, systems management and maintenance of computers, upkeep and development of miscellaneous equipment, and our share of the maintenance of equipment that is shared with other investigators in Donner Lab who are not participants in the Program Project. General research on improvement of the efficiency and quality of data collection is carried out in the context of the CORE. Certain expenses that might be considered part of the basic administrative infrastructure, and which are nevertheless charged as direct costs (such as telephone service, space and electricity), are budgeted in the Core Resources. The Core Resources budget also includes costs for the fraction of personnel effort associated the infrastructure maintenance and with the scientific management of the Core facilities as well as the Program Project as a whole.

Public Health Relevance

Structural studies enabled by the core contribute to our understanding of cell biology at the molecular level that will help understand the causes and potential treatments for several diseases and other medical problems. Electron microscopy research on microtubule- and actin-based systems will lead to better understanding of a number of functional mechanisms within the cell.

Agency
National Institute of Health (NIH)
Type
Research Program Projects (P01)
Project #
5P01GM051487-19
Application #
8666761
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
Budget End
Support Year
19
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Lawrence Berkeley National Laboratory
Department
Type
DUNS #
City
Berkeley
State
CA
Country
United States
Zip Code
94720
Holmes, Dawn E; Giloteaux, Ludovic; Chaurasia, Akhilesh K et al. (2015) Evidence of Geobacter-associated phage in a uranium-contaminated aquifer. ISME J 9:333-46
Tsai, Wen-Ting; Hassan, Ahmed; Sarkar, Purbasha et al. (2014) From voxels to knowledge: a practical guide to the segmentation of complex electron microscopy 3D-data. J Vis Exp :e51673
Nakamura, Muneaki; Chen, Lu; Howes, Stuart C et al. (2014) Remote control of myosin and kinesin motors using light-activated gearshifting. Nat Nanotechnol 9:693-7
Antonellis, Patrick J; Pollock, Lana M; Chou, Shih-Wei et al. (2014) ACF7 is a hair-bundle antecedent, positioned to integrate cuticular plate actin and somatic tubulin. J Neurosci 34:305-12
Beers, Keith M; Yakovlev, Sergey; Jackson, Andrew et al. (2014) Absence of Schroeder's paradox in a nanostructured block copolymer electrolyte membrane. J Phys Chem B 118:6785-91
Chen, X Chelsea; Wong, David T; Yakovlev, Sergey et al. (2014) Effect of morphology of nanoscale hydrated channels on proton conductivity in block copolymer electrolyte membranes. Nano Lett 14:4058-64
Shamir, Eliah R; Pappalardo, Elisa; Jorgens, Danielle M et al. (2014) Twist1-induced dissemination preserves epithelial identity and requires E-cadherin. J Cell Biol 204:839-56
Howes, Stuart C; Alushin, Gregory M; Shida, Toshinobu et al. (2014) Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure. Mol Biol Cell 25:257-66
Remis, Jonathan P; Wei, Dongguang; Gorur, Amita et al. (2014) Bacterial social networks: structure and composition of Myxococcus xanthus outer membrane vesicle chains. Environ Microbiol 16:598-610
Alushin, Gregory M; Lander, Gabriel C; Kellogg, Elizabeth H et al. (2014) High-resolution microtubule structures reveal the structural transitions in ??-tubulin upon GTP hydrolysis. Cell 157:1117-29

Showing the most recent 10 out of 75 publications