The overarching goal of this Program is to determine the vulnerabilities of the HIV-1 Env protein cell entry machine as a target for disease intervention by identifying Env inhibitors, defining their structural mechanisms of action, and using a structure-mechanism framework as a guide to optimize antagonist functions. Inhibition of the initial entry of HIV-1 into host cells remains a compelling, yet elusive means to prevent infection and spread of the virus. Inhibitors of HIV-1 Env that can either block cell interactions, inactivate the trimeric virus spike protein complex before receptor encounter or disrupt receptor-induced conformational changes in the Env would hold great promise of inhibiting initial HIV-1 infection. Such inhibitors would provide virus-targeted molecular weapons both to prevent AIDS transmission, a global health priority, and to treat already-infected individuals. In spite of the great potential of Env inhibitors for AIDS intervention, structural complexity and polymorphisms of the Env proteins have presented significant challenges to progress. Nonetheless, the efforts of our Program have led to the development of two classes of Env gp120 inhibitors that utilize the highly conserved CD4 binding site, but with very different modes of action. Investigation of these inhibitors has defined unique pathways to engage the virus Env trimer and cause both inactivation of the virus and blockade of virus entry into the host cell. Our Program is ideally positioned to take advantage of these new results through state-of-the-art structure- and mechanism-based approaches, achieved by the collaborative nature of our multi-institutional research team, with strong expertise in high-resolution structure determination, structural dynamics, kinetic, thermodynamic and structural mechanisms of protein-protein interactions, chemical design and synthesis, computational methods, and virology. We will apply this team approach to structure-based design and mechanistic investigations of inhibitor chemotypes that we have already developed, and new inhibitor chemotypes as they are discovered in our own and other laboratories. Overall, the Program will provide a broad-based research infrastructure to identify new paths for the discovery of preventive and therapeutic agents that block HIV-1 Env function.

Public Health Relevance

In the effort to control and ultimately eradicate the global AIDS pandemic, targeting the HIV-1 envelope (Env) remains an important means to identify preventive and therapeutic interventions. The thrust of this Program Project is to identify HIV-1 antagonists by understanding the molecular and structural mechanisms of the HIV-1 Env and the vulnerabilities of Env that can be utilized to inactivate the virus and block host cell infectin.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-AARR-E (43))
Program Officer
Sakalian, Michael
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Drexel University
United States
Zip Code
Ross, Patrick; Weihofen, Wilhelm; Siu, Fai et al. (2015) Isothermal chemical denaturation to determine binding affinity of small molecules to G-protein coupled receptors. Anal Biochem 473:41-5
Madani, Navid; Princiotto, Amy M; Schön, Arne et al. (2014) CD4-mimetic small molecules sensitize human immunodeficiency virus to vaccine-elicited antibodies. J Virol 88:6542-55
Herschhorn, Alon; Gu, Christopher; Espy, Nicole et al. (2014) A broad HIV-1 inhibitor blocks envelope glycoprotein transitions critical for entry. Nat Chem Biol 10:845-52
Kwon, Young Do; LaLonde, Judith M; Yang, Yongping et al. (2014) Crystal structures of HIV-1 gp120 envelope glycoprotein in complex with NBD analogues that target the CD4-binding site. PLoS One 9:e85940
Miura, Takuya; Hidaka, Koushi; Azai, Yukiko et al. (2014) Optimization of plasmepsin inhibitor by focusing on similar structural feature with chloroquine to avoid drug-resistant mechanism of Plasmodium falciparum. Bioorg Med Chem Lett 24:1698-701
Munro, James B; Mothes, Walther (2014) The HIV-1 Env trimer in HD. Structure 22:935-6
Emileh, Ali; Duffy, Caitlin; Holmes, Andrew P et al. (2014) Covalent conjugation of a peptide triazole to HIV-1 gp120 enables intramolecular binding site occupancy. Biochemistry 53:3403-14
Evans, Sean L; Schön, Arne; Gao, Qimeng et al. (2014) HIV-1 Vif N-terminal motif is required for recruitment of Cul5 to suppress APOBEC3. Retrovirology 11:4
Afanador, Gustavo A; Matthews, Krista A; Bartee, David et al. (2014) Redox-dependent lipoylation of mitochondrial proteins in Plasmodium falciparum. Mol Microbiol 94:156-71
Courter, Joel R; Madani, Navid; Sodroski, Joseph et al. (2014) Structure-based design, synthesis and validation of CD4-mimetic small molecule inhibitors of HIV-1 entry: conversion of a viral entry agonist to an antagonist. Acc Chem Res 47:1228-37

Showing the most recent 10 out of 80 publications