The Administrative Core provides fundamental scientific and fiscal oversight of Projects 1-3 and of the Clinical Genetics Core in an overall effort for successful execution of the experimental plan. A major goal of this Core is to ensure that there is a robust subject recruitment plan and good communic'ation, both internally within DGAP and externally with collaborating investigators. To this end, it serves to assist in the coordination and workflow among the Projects and Cores. Various policy decisions ranging from case prioritization to changes in the experimental plan due to evolving technologies to issues of authorship on DGAP publications are under the purview of the Administrative Core. The Administrative Core is accountable for the annual reporting of progress in DGAP. The Administrative Core also functions to facilitate interaction with the Advisory Committee.

Public Health Relevance

The Developmental Genome Anatomy Project studies a group of patients underserved by the health care system: those with congenital abnormalities due to chromosome rearrangements. Our mission is to discover genes of importance in human development that are disrupted by these chromosomal rearrangements, genes that are difficult to identify by more traditional human genetic strategies, thereby opening investigation of the disorders that they cause.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM061354-09
Application #
8377572
Study Section
Special Emphasis Panel (ZRG1-GGG-G)
Project Start
Project End
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
9
Fiscal Year
2012
Total Cost
$220,534
Indirect Cost
$139,599
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Wang, Jian; Yu, Tingting; Wang, Zhigang et al. (2016) A New Subtype of Multiple Synostoses Syndrome Is Caused by a Mutation in GDF6 That Decreases Its Sensitivity to Noggin and Enhances Its Potency as a BMP Signal. J Bone Miner Res 31:882-9
Chen, Xiaoli; An, Yu; Gao, Yonghui et al. (2016) Rare Deleterious PARD3 Variants in the aPKC-Binding Region are Implicated in the Pathogenesis of Human Cranial Neural Tube Defects via Disrupting Apical Tight Junction Formation. Hum Mutat :
Tai, Derek J C; Ragavendran, Ashok; Manavalan, Poornima et al. (2016) Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR. Nat Neurosci 19:517-22
Ordulu, Zehra; Kammin, Tammy; Brand, Harrison et al. (2016) Structural Chromosomal Rearrangements Require Nucleotide-Level Resolution: Lessons from Next-Generation Sequencing in Prenatal Diagnosis. Am J Hum Genet 99:1015-1033
Mukherjee, Kusumika; Ishii, Kana; Pillalamarri, Vamsee et al. (2016) Actin capping protein CAPZB regulates cell morphology, differentiation, and neural crest migration in craniofacial morphogenesis†. Hum Mol Genet 25:1255-70
Brand, Harrison; Collins, Ryan L; Hanscom, Carrie et al. (2015) Paired-Duplication Signatures Mark Cryptic Inversions and Other Complex Structural Variation. Am J Hum Genet 97:170-6
Quintero-Rivera, Fabiola; Xi, Qiongchao J; Keppler-Noreuil, Kim M et al. (2015) MATR3 disruption in human and mouse associated with bicuspid aortic valve, aortic coarctation and patent ductus arteriosus. Hum Mol Genet 24:2375-89
Macera, M J; Sobrino, A; Levy, B et al. (2015) Prenatal diagnosis of chromothripsis, with nine breaks characterized by karyotyping, FISH, microarray and whole-genome sequencing. Prenat Diagn 35:299-301
Migliavacca, Eugenia; Golzio, Christelle; Männik, Katrin et al. (2015) A Potential Contributory Role for Ciliary Dysfunction in the 16p11.2 600 kb BP4-BP5 Pathology. Am J Hum Genet 96:784-96
Choi, Jin-Ho; Balasubramanian, Ravikumar; Lee, Phil H et al. (2015) Expanding the Spectrum of Founder Mutations Causing Isolated Gonadotropin-Releasing Hormone Deficiency. J Clin Endocrinol Metab 100:E1378-85

Showing the most recent 10 out of 65 publications