Research proposals developed in this Program Prqject will characterize the mechanisms responsible for the cardioprotective effects of volatile anesthetics against ischemia and reperfusion iniury in vivo, and will directly elucidate mechanisms regarding the specific signal transduction pathways modulated in vitro. It is our belief that the most effective approach to the complex and clinically relevant issue of myocardial ischemia and its response to anesthetics is to integrate our studies at multiple levels. We propose a Program Project consisting of three interrelated research projects supported by a Core facility focused on fundamental mechanisms responsible for the cardioprotective effects of volatile anesthetic-induced preconditioning (APC). This integrative approach will not only bring together a multi-talented group of investigators including cardiac electrophysiologists and molecular biologists, but also will capitalize on the unique advantage of interactions amongst the Cardiovascular Research Center, Biophysics Research Institute and the Departments of Pharmacology, Physiology, Biochemistry and Anesthesiology at the Medical College of Wisconsin. Project I. ANESTHETIC-INDUCED PRECONDITIONING IN VIVO. This project will delineate mechanisms responsible for the novel cardioprotective effects of volatile anesthetics against ischemia and reperfusion injury in vivo and will provide initial evidence for the involvement of specific signal transduction pathways modulating APC. Project Director: David C. Warltier, M.D., Ph.D. Project II. CARDIAC K,T, CHANNELS IN ANESTHETIC-INDUCED PRECONDITIONING. This prqject will investigate the effects of APC on the response of native sarcolemmal and mitochondfial KATp channels in cardiac ventricular myocytes, expressed recombinant KATp channels and channels in a lipid bilayer to nucleotides and potassium channel openers and blockers. Project Director: Zeljko J. Bosnjak, Ph.D. Project III. CARDIAC ELECTROPHYSIOLOGY IN ANESTHETIC-INDUCED PRECONDITIONING. This project will characterize arrhythmias and the ionic mechanisms underlying volatile anesthetic action on cardiac electrophysiology including major voltage-gated ion channel types (fast Na channel, L-type Ca channel, and transient outward K channel) that may ultimately be directly or indirectly involved in APC. Project Director: Wai-Meng Kwok, Ph.D. BIOCHEMICAL AND MOLECULAR BIOLOGY CORE. The Biochemical and Molecular Biology Core of this Program Prqiect will provide a highly specialized team of professional staff, capable of organizing a variety of assays in a well equipped facility to support investigation of hypotheses developed in Projects I, II and III. Core Directors: Meetha Medhora. Ph.D. and David Harder. Ph.D.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
1P01GM066730-01
Application #
6557165
Study Section
Special Emphasis Panel (ZGM1-PS-0 (01))
Program Officer
Cole, Alison E
Project Start
2003-05-05
Project End
2008-04-30
Budget Start
2003-05-05
Budget End
2004-04-30
Support Year
1
Fiscal Year
2003
Total Cost
$1,147,721
Indirect Cost
Name
Medical College of Wisconsin
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
937639060
City
Milwaukee
State
WI
Country
United States
Zip Code
53226
Liu, Yong; Usa, Kristie; Wang, Feng et al. (2018) MicroRNA-214-3p in the Kidney Contributes to the Development of Hypertension. J Am Soc Nephrol 29:2518-2528
Zhang, Xiao; Dash, Ranjan K; Jacobs, Elizabeth R et al. (2018) Integrated computational model of the bioenergetics of isolated lung mitochondria. PLoS One 13:e0197921
Ghanian, Zahra; Konduri, Girija Ganesh; Audi, Said Halim et al. (2018) Quantitative optical measurement of mitochondrial superoxide dynamics in pulmonary artery endothelial cells. J Innov Opt Health Sci 11:
Liang, Mingyu (2018) Epigenetic Mechanisms and Hypertension. Hypertension 72:1244-1254
Pant, Tarun; Dhanasekaran, Anuradha; Fang, Juan et al. (2018) Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy. BMC Cardiovasc Disord 18:197
Ge, Zhi-Dong; Li, Yingchuan; Qiao, Shigang et al. (2018) Failure of Isoflurane Cardiac Preconditioning in Obese Type 2 Diabetic Mice Involves Aberrant Regulation of MicroRNA-21, Endothelial Nitric-oxide Synthase, and Mitochondrial Complex I. Anesthesiology 128:117-129
Williams, Anna Marie; Liu, Yong; Regner, Kevin R et al. (2018) Artificial intelligence, physiological genomics, and precision medicine. Physiol Genomics 50:237-243
Liu, Pengyuan; Liu, Yong; Liu, Han et al. (2018) Role of DNA De Novo (De)Methylation in the Kidney in Salt-Induced Hypertension. Hypertension 72:1160-1171
Chuppa, Sandra; Liang, Mingyu; Liu, Pengyuan et al. (2018) MicroRNA-21 regulates peroxisome proliferator-activated receptor alpha, a molecular mechanism of cardiac pathology in Cardiorenal Syndrome Type 4. Kidney Int 93:375-389
Korman, Ben; Dash, Ranjan K; Peyton, Philip J (2018) Can Mathematical Modeling Explain the Measured Magnitude of the Second Gas Effect? Anesthesiology 128:1075-1083

Showing the most recent 10 out of 134 publications