This Program Project applies an extraordinarily broad array of approaches to understand the integrated behavior across time scales and from atomic resolution to whole animals of the nuclear factor kappa B (NF?B) family of transcription factor signaling system. NF?Bs control cellular stress responses, cell growth, survival, and apoptosis. System control is accomplished by interaction a family of inhibitors of kappa B proteins (I?Bs) that sequester NF?B family members in the cytoplasm poised for rapid activation. Experiments and mathematical modeling showed that rapid degradation of free inhibitors achieves low free inhibitor concentrations and robust signal response. Coupled folding and binding of regions of the proteins appears critical for defining degradation rates and binding kinetics. In Overall AIM 1, we will explore how the degradation rate of the canonical inhibitors controls signaling. Folding kinetics by stopped flow and T-jump, theoretical studies on the folding pathways, NMR dynamics, and identification of the "degrons" will together address this aim. In Overall AIM 2, we will explore ways in which the signaling is under kinetic control. We have discovered that I?B? facilitates dissociation of NF?B from transcription sites ("stripping"). This phenomenon will be analyzed in cells using mutants deficient in "stripping", the mechanism will be predicted by theoretical studies, the kinetics will be measured by single molecule studies, the structures of ternary complexes will be studied by NMR and the effects of stochasticity on the kinetics of transcription activation will be incorporated. In Overall AIM 3, we will explore the idea that I?Bs stabilize certain NF?B homo and heterodimers affecting the specificity of stimulus response. Certain complexes activate specific genes, yet the molecular mechanism, binding affinities, "foldedness" of the inhibitors, and roles in cells are still incomplete. Our multiscale, quantitative combination of theory, in vitro biochemical and biophysical characterization, and in vivo studies will enable us to map the landscape by systematic perturbation of the protein interaction dynamics can be quantitatively linked to the emergent biological response.

Public Health Relevance

The nuclear factor kappa B family of transcription factors controls a myriad of cellular functions including growth regulation and thus cancer, the immune response, and development. How the hundreds of different genes are turned on and off specifically is not yet understood. Our combination of theoretical biophysics, experimental approaches and cell biology will provide a deep understanding this important system.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-D (40))
Program Officer
Wehrle, Janna P
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Schools of Arts and Sciences
La Jolla
United States
Zip Code
Wolynes, Peter G (2015) Evolution, energy landscapes and the paradoxes of protein folding. Biochimie 119:218-30
Potoyan, Davit A; Wolynes, Peter G (2014) On the dephasing of genetic oscillators. Proc Natl Acad Sci U S A 111:2391-6
Alverdi, Vera; Hetrick, Byron; Joseph, Simpson et al. (2014) Direct observation of a transient ternary complex during I?B?-mediated dissociation of NF-?B from DNA. Proc Natl Acad Sci U S A 111:225-30
Tao, Zhihua; Fusco, Amanda; Huang, De-Bin et al. (2014) p100/I?B? sequesters and inhibits NF-?B through kappaBsome formation. Proc Natl Acad Sci U S A 111:15946-51
Schafer, N P; Kim, B L; Zheng, W et al. (2014) Learning To Fold Proteins Using Energy Landscape Theory. Isr J Chem 54:1311-1337
Dembinski, Holly; Wismer, Kevin; Balasubramaniam, Deepa et al. (2014) Predicted disorder-to-order transition mutations in I?B? disrupt function. Phys Chem Chem Phys 16:6480-5
Alves, Bryce N; Tsui, Rachel; Almaden, Jonathan et al. (2014) I?B? is a key regulator of B cell expansion by providing negative feedback on cRel and RelA in a stimulus-specific manner. J Immunol 192:3121-32
Ferreiro, Diego U; Komives, Elizabeth A; Wolynes, Peter G (2014) Frustration in biomolecules. Q Rev Biophys 47:285-363
Kim, Bobby L; Schafer, Nicholas P; Wolynes, Peter G (2014) Predictive energy landscapes for folding ?-helical transmembrane proteins. Proc Natl Acad Sci U S A 111:11031-6
Cervantes, Carla F; Handley, Lindsey D; Sue, Shih-Che et al. (2013) Long-range effects and functional consequences of stabilizing mutations in the ankyrin repeat domain of IýýBýý. J Mol Biol 425:902-13

Showing the most recent 10 out of 58 publications