The Program Project goals towards the discovery and characterization of novel phosphonates have benefited significantly from biochemical and structural biological characterization of the enzymes involved in the biosynthesis of these natural products. Additionally, detailed knowledge of the threedimensional structures of such enzymes in complex with their cognate substrates/inhibitors can aid in the engineering of these catalysts to yield derivative compounds with improved biological and/or pharmacokinetic properties. In this next cycle, we expand our research aims towards the biochemical characterization of gene clusters involved in the biosynthesis of the antibacterial plumbemycin and the antifungal rhizoctlcin. The enzymes from these clusters direct the production of two natural products consisting of a common warhead (the threonine synthase inhibitor (Z)-L-2-amino-5-phosphono-3- pentenoic acid (APPA)) but with different peptide-based delivery vehicles. We will carry out in vitro reconstitution of individual enzymes from each of these clusters and utilize this knowledge for the production of additional peptidic and non-peptidic derivatives of APPA that can target a range of additional pathogenic organisms. Concurrently, we also aim to continue our structure-function studies of several of the biosynthetic enzymes that have been characterized during the initial cycle. Lastly, we will also characterize the mechanisms of resistance that are utilized by the producing organisms and may limit the biological utility of several phosphonates.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-U)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Illinois Urbana-Champaign
United States
Zip Code
Shao, Zengyi; Zhao, Huimin (2014) Manipulating natural product biosynthetic pathways via DNA assembler. Curr Protoc Chem Biol 6:65-100
Cobb, Ryan E; Ning, Jonathan C; Zhao, Huimin (2014) DNA assembly techniques for next-generation combinatorial biosynthesis of natural products. J Ind Microbiol Biotechnol 41:469-77
Luo, Yunzi; Cobb, Ryan E; Zhao, Huimin (2014) Recent advances in natural product discovery. Curr Opin Biotechnol 30:230-7
Doroghazi, James R; Albright, Jessica C; Goering, Anthony W et al. (2014) A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat Chem Biol 10:963-8
Yu, Xiaomin; Price, Neil P J; Evans, Bradley S et al. (2014) Purification and characterization of phosphonoglycans from Glycomyces sp. strain NRRL B-16210 and Stackebrandtia nassauensis NRRL B-16338. J Bacteriol 196:1768-79
Wang, Meng; Beissner, Mirko; Zhao, Huimin (2014) Aryl-aldehyde formation in fungal polyketides: discovery and characterization of a distinct biosynthetic mechanism. Chem Biol 21:257-63
Agarwal, Vinayak; Peck, Spencer C; Chen, Jui-Hui et al. (2014) Structure and function of phosphonoacetaldehyde dehydrogenase: the missing link in phosphonoacetate formation. Chem Biol 21:125-35
Ju, Kou-San; Doroghazi, James R; Metcalf, William W (2014) Genomics-enabled discovery of phosphonate natural products and their biosynthetic pathways. J Ind Microbiol Biotechnol 41:345-56
Eriksen, Dawn T; Lian, Jiazhang; Zhao, Huimin (2014) Protein design for pathway engineering. J Struct Biol 185:234-42
Cioni, Joel P; Doroghazi, James R; Ju, Kou-San et al. (2014) Cyanohydrin phosphonate natural product from Streptomyces regensis. J Nat Prod 77:243-9

Showing the most recent 10 out of 54 publications