Core B provides support for the use by Program Project scientists of neutron scattering instruments at the NIST Center for Neutron Research (NCNR) in Gaithersburg, Maryland. The success of the Program Project, entitled Making Sense of Voltage Sensors, depends almost entirely on the use of neutron diffraction and reflectivity measurements to determine the disposition of potassium channels and their voltage sensors in lipid bilayer membranes.
The specific aim of Core B is to provide technical and training support at the NCNR for Program scientists using neutron scattering instruments, particularly the Advanced Neutron Diffractometer/Reflectometer (AND/R). Technical and training support will be provided by Dr. David Worcester, who is one of the early pioneers of membrane neutron diffraction. Serving as the senior neutron scientist, he will be stationed full-time at the NCNR to work closely with Project scientists to help them plan, execute, and analyze neutron scattering experiments. He will report to and work closely with the Program Director to assure the timely planning and execution of the neutron scattering work proposed in Projects 2 and 3.

Public Health Relevance

Core B is the neutron scattering core for a Program Project that investigates how ion channels gate the flow of ions across nerve, muscle, and cardiac cells in response to changes in voltage across their cell membranes. These voltage changes, called action potentials, are the means by which nerve, muscle, and cardiac cells communicate with each other. Many neuromuscular and cardiac diseases arise from defects in the way action potentials are produced. Results from this Program will help us understand the origin of such diseases.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-N)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Irvine
United States
Zip Code
Cymer, Florian; von Heijne, Gunnar; White, Stephen H (2015) Mechanisms of integral membrane protein insertion and folding. J Mol Biol 427:999-1022
Andersson, Magnus; Mattle, Daniel; Sitsel, Oleg et al. (2014) Copper-transporting P-type ATPases use a unique ion-release pathway. Nat Struct Mol Biol 21:43-8
Ulmschneider, Martin B; Ulmschneider, Jakob P; Schiller, Nina et al. (2014) Spontaneous transmembrane helix insertion thermodynamically mimics translocon-guided insertion. Nat Commun 5:4863
Tronin, Andrey Y; Nordgren, C Erik; Strzalka, Joseph W et al. (2014) Direct evidence of conformational changes associated with voltage gating in a voltage sensor protein by time-resolved X-ray/neutron interferometry. Langmuir 30:4784-96
Jiang, Xiaoxu; Villafuerte, Maria Katerina R; Andersson, Magnus et al. (2014) Galactoside-binding site in LacY. Biochemistry 53:1536-43
Madrona, Yarrow; Hollingsworth, Scott A; Tripathi, Sarvind et al. (2014) Crystal structure of cindoxin, the P450cin redox partner. Biochemistry 53:1435-46
Andersson, Magnus; Ulmschneider, Jakob P; Ulmschneider, Martin B et al. (2013) Conformational states of melittin at a bilayer interface. Biophys J 104:L12-4
Tronin, A; Chen, C-H; Gupta, S et al. (2013) Structural changes in single membranes in response to an applied transmembrane electric potential revealed by time-resolved neutron/X-ray interferometry. Chem Phys 422:
Reichow, Steve L; Clemens, Daniel M; Freites, J Alfredo et al. (2013) Allosteric mechanism of water-channel gating by Ca2+-calmodulin. Nat Struct Mol Biol 20:1085-92
Kyrychenko, Alexander; Tobias, Douglas J; Ladokhin, Alexey S (2013) Validation of depth-dependent fluorescence quenching in membranes by molecular dynamics simulation of tryptophan octyl ester in POPC bilayer. J Phys Chem B 117:4770-8

Showing the most recent 10 out of 28 publications