This project is concerned with developing new statistical methodology for population genetic data. Attention will be focused on three main areas concerned with dependencies among sets of alleles: the characterization of population structure, the characterization of the association patterns within and between genetic markers and along haplotypes, and the characterization of relatedness and inbreeding for individuals. Theory will be developed at least in part in response to the needs of current large-scale SNP surveys for humans and in anticipation of whole-genome sequence data sets. The population-specific measures of population structure described by B.S. Weir and W.G. Hill will be applied to recently published whole-genome SNP data sets and whole-genome sequence data sets. Methods will be sought to improve methods of drawing inferences about these quantities. Measures of identity by descent and of population structure have the potential to identify regions of the human genome that have been subject to natural selection, and these analyses will be conducted with attention to the large variation and skewness imposed by the evolutionary process. The work of CC. Laurie and B.S. Weir on detecting chromosomal features, such as inversions, by examining correlations of individual SNPs with principal components derived from large sets of SNPs will be extended. The partial regression approach introduced for QTL mapping will be applied to this problem. Measures of linkage disequilibrium that do not depend on genotypic phase were introduced and have been used previously by these investigators. They will now be extended to the situation of disequilibrium between pairs of loci when several SNPs typed for each gene. Association mapping continues to be of considerable interest to human geneticists and the problem of accounting for (even low level) relatedness will be addressed. Ignoring individuals with at least one relative in a case-control study, for example, can lead to a loss of power. Previous work of Y. Choi and B.S. Weir that modified simple allelic association tests will be extended to the more appropriate logistic regression methods.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM099568-02
Application #
8479387
Study Section
Special Emphasis Panel (ZRG1-GGG-M)
Project Start
Project End
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
2
Fiscal Year
2013
Total Cost
$340,903
Indirect Cost
$116,308
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Xue, Angli; Wu, Yang; Zhu, Zhihong et al. (2018) Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun 9:2941
Marigorta, Urko M; Rodríguez, Juan Antonio; Gibson, Greg et al. (2018) Replicability and Prediction: Lessons and Challenges from GWAS. Trends Genet 34:504-517
Pappas, D J; Lizee, A; Paunic, V et al. (2018) Significant variation between SNP-based HLA imputations in diverse populations: the last mile is the hardest. Pharmacogenomics J 18:367-376
Mo, Angela; Marigorta, Urko M; Arafat, Dalia et al. (2018) Disease-specific regulation of gene expression in a comparative analysis of juvenile idiopathic arthritis and inflammatory bowel disease. Genome Med 10:48
Qi, Ting; Wu, Yang; Zeng, Jian et al. (2018) Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nat Commun 9:2282
Yengo, Loic; Visscher, Peter M (2018) Assortative mating on complex traits revisited: Double first cousins and the X-chromosome. Theor Popul Biol 124:51-60
Browning, Sharon R; Browning, Brian L; Daviglus, Martha L et al. (2018) Ancestry-specific recent effective population size in the Americas. PLoS Genet 14:e1007385
Kerr, Kathleen F; Avery, Christy L; Lin, Henry J et al. (2017) Genome-wide association study of heart rate and its variability in Hispanic/Latino cohorts. Heart Rhythm 14:1675-1684
Zhan, Xiang; Zhao, Ni; Plantinga, Anna et al. (2017) Powerful Genetic Association Analysis for Common or Rare Variants with High-Dimensional Structured Traits. Genetics 206:1779-1790
Jain, Deepti; Hodonsky, Chani J; Schick, Ursula M et al. (2017) Genome-wide association of white blood cell counts in Hispanic/Latino Americans: the Hispanic Community Health Study/Study of Latinos. Hum Mol Genet 26:1193-1204

Showing the most recent 10 out of 152 publications