The overall objective of the four projects in this program of research is to develop and exploit biosensors and image analysis techniques to delineate the mechanisms that control the spatial and temporal activity of Rho GTPases in different biological contexts. In particular, guanine nucleotide exchange factors (GEFs), the upstream activators of Rho GTPases, are thought to promote highly polarized signaling that is capable of generating changes in the shape, movement and organization of cells.
The aim of this project (project 3) is to study GEFs in the context of epithelial morphogenesis and migration. Epithelial morphogenesis and migration drive development in the embryo and regeneration and repair in the adult, while defects underlie a wide spectrum of human diseases and syndromes, notably cancer. Depsite representing very different aspects of cell behavior, morphogenesis and migration share many signaling pathway components, in particular Rho GTPases, but the key feature that distinguishes their respective contributions is their distinct spatial localization. The underlying hypothesis is that the spatial localization and molecular specificity of Rho GTPase signaling pathways are determined by specific GEFs (of which there are 82 in the human genome). The key aims are to: (i) identify and molecularly characterize GEFs involved in the establishment (morphogenesis) and dynamic reorganization (collective migration) of apically localized cell-cell junctions and basally localized cell- matrix adhesions in the human bronchial epithelial cell line, 16HBE, and (ii) use GEF biosensors developed by Hahn and Sondek together with image analysis techniques developed by Danuser to visualize their activity and relationship to GTPase signaling in space and time. It is expected that the project will generate significant new insights into the molecular mechanisms regulating fundamental aspects of epithelial cell behavior.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM103723-02
Application #
8744291
Study Section
Special Emphasis Panel (ZRG1-IMST-J)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
2
Fiscal Year
2014
Total Cost
$177,700
Indirect Cost
$77,700
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Lawson, Campbell D; Fan, Cheng; Mitin, Natalia et al. (2016) Rho GTPase Transcriptome Analysis Reveals Oncogenic Roles for Rho GTPase-Activating Proteins in Basal-like Breast Cancers. Cancer Res 76:3826-37
Nguyen, Trang Thi Thu; Park, Wei Sun; Park, Byung Ouk et al. (2016) PLEKHG3 enhances polarized cell migration by activating actin filaments at the cell front. Proc Natl Acad Sci U S A 113:10091-6
Marjoram, R J; Guilluy, C; Burridge, K (2016) Using magnets and magnetic beads to dissect signaling pathways activated by mechanical tension applied to cells. Methods 94:19-26
Wang, Hui; Vilela, Marco; Winkler, Andreas et al. (2016) LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nat Methods 13:755-8
Hodgson, Louis; Spiering, Désirée; Sabouri-Ghomi, Mohsen et al. (2016) FRET binding antenna reports spatiotemporal dynamics of GDI-Cdc42 GTPase interactions. Nat Chem Biol 12:802-9
MacNevin, Christopher J; Toutchkine, Alexei; Marston, Daniel J et al. (2016) Ratiometric Imaging Using a Single Dye Enables Simultaneous Visualization of Rac1 and Cdc42 Activation. J Am Chem Soc 138:2571-5
Burridge, Keith; Guilluy, Christophe (2016) Focal adhesions, stress fibers and mechanical tension. Exp Cell Res 343:14-20
Wang, Hui; Hahn, Klaus M (2016) LOVTRAP: A Versatile Method to Control Protein Function with Light. Curr Protoc Cell Biol 73:21.10.1-21.10.14
Scott, David W; Tolbert, Caitlin E; Burridge, Keith (2016) Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF. Mol Biol Cell 27:1420-30
Zaritsky, Assaf; Welf, Erik S; Tseng, Yun-Yu et al. (2015) Seeds of Locally Aligned Motion and Stress Coordinate a Collective Cell Migration. Biophys J 109:2492-500

Showing the most recent 10 out of 19 publications