The Interdependency of Drug Resistance Evolution and Drug Design: HIV-1 Protease a Case Study Administrative Core The Administrative Core will provide oversight to the whole Program Project to ensure effective communication and maximum possible synergy between Projects and Cores, and make sure the resources are utilized in the most efficient manner to achieve our common scientific goals. The Administrative Core has the following specific Aims:
Aim 1. Provide leadership to the Program Project's administration including fiscal oversight, and ensure regulatory compliance.
Aim 2. Coordinate and integrate scientific operation of Projects and Cores.
Aim 3. Facilitate communication, synergy and community among the teams.
Aim 4. Manage progress review and strategic planning.
Aim 5. Ensure communication of results with the scientific community, through conferences and publications.

Public Health Relevance

The Interdependency of Drug Resistance Evolution and Drug Design: HIV-1 Protease a Case Study Administrative Core The Administrative Core will provide oversight to the whole Program Project to ensure effective communication and maximum possible synergy between Projects and Cores, and make sure the resources are utilized in the most efficient manner to achieve our common scientific goals.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
1P01GM109767-01A1
Application #
8789527
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-07-31
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
City
Worcester
State
MA
Country
United States
Zip Code
01655
Leidner, Florian; Kurt Yilmaz, Nese; Paulsen, Janet et al. (2018) Hydration Structure and Dynamics of Inhibitor-Bound HIV-1 Protease. J Chem Theory Comput 14:2784-2796
Nemmara, Venkatesh V; Subramanian, Venkataraman; Muth, Aaron et al. (2018) The Development of Benzimidazole-Based Clickable Probes for the Efficient Labeling of Cellular Protein Arginine Deiminases (PADs). ACS Chem Biol 13:712-722
Ilina, Tatiana V; Slack, Ryan L; Elder, John H et al. (2018) Effect of tRNA on the Maturation of HIV-1 Reverse Transcriptase. J Mol Biol 430:1891-1900
Khan, Shahid N; Persons, John D; Paulsen, Janet L et al. (2018) Probing Structural Changes among Analogous Inhibitor-Bound Forms of HIV-1 Protease and a Drug-Resistant Mutant in Solution by Nuclear Magnetic Resonance. Biochemistry 57:1652-1662
Persons, John D; Khan, Shahid N; Ishima, Rieko (2018) An NMR strategy to detect conformational differences in a protein complexed with highly analogous inhibitors in solution. Methods 148:9-18
Potempa, Marc; Lee, Sook-Kyung; Kurt Yilmaz, Nese et al. (2018) HIV-1 Protease Uses Bi-Specific S2/S2' Subsites to Optimize Cleavage of Two Classes of Target Sites. J Mol Biol 430:5182-5195
Tilvawala, Ronak; Nguyen, Son Hong; Maurais, Aaron J et al. (2018) The Rheumatoid Arthritis-Associated Citrullinome. Cell Chem Biol 25:691-704.e6
Venev, Sergey V; Zeldovich, Konstantin B (2018) Thermophilic Adaptation in Prokaryotes Is Constrained by Metabolic Costs of Proteostasis. Mol Biol Evol 35:211-224
Wong, Alicia; Bryzek, Danuta; Dobosz, Ewelina et al. (2018) A Novel Biological Role for Peptidyl-Arginine Deiminases: Citrullination of Cathelicidin LL-37 Controls the Immunostimulatory Potential of Cell-Free DNA. J Immunol 200:2327-2340
Sun, Bo; Dwivedi, Nishant; Bechtel, Tyler J et al. (2017) Citrullination of NF-?B p65 promotes its nuclear localization and TLR-induced expression of IL-1? and TNF?. Sci Immunol 2:

Showing the most recent 10 out of 22 publications