NR3A and NR3B represent a newly identified family of JV-methyl-D-aspartate receptor (NMDAR) subunits. In Project HI, we will investigate NR3A/3B function at the whole animal/systems level. Our previous data indicate that rodogenous NR3 may act as a dominant-interfering molecule of classical NMDAR activity (classical NMDAR refers to receptors composed of NR1/NR2 subunits). Additionally, NR3A/3B can form excitatory glycine-sensitive channels (not responsive to glutamate) in recombinant systems when co-expressed with NR1 in the absence of NR2 subunits. NMDARs are thought to play crucial roles in both normal development and neurotoxicity mediated by glutamate (excitotoxicity). Excitotoxicity has been implicated in neuronal injury and death in focal cerebral hypoxia/ischemia as well as a number of neurodegenerative disorders. The elucidation of the role of NR3A/3B in these events requires animal models. Toward this goal, we have generated four different mutant mice in this project: knockout (KO) mice of NR3A and NR3B, and transgenic (Tg) mice for NR3A and NR3B. Our preliminary studies show that NR3A KO mice exhibit phenotypic changes, including morphological changes (enhanced dendritic spine size and number), electrophysiological alterations (faster rise time of the NMDAR component of the excitatory postsynaptic current [EPSC]), and behavioral modifications. Here, NR3 KO and Tg mice will be subjected to further electrophysiological studies and pathophysiologically relevant experiments to test for in vivo modulation of NMDAR activity by NR3 during neonatal development. In related experiments, this Project identified a gene that is upregulated in NR3A KO mice. The gene, named p!6 based on its predicted MW, is a member of a novel and large gene family. Forced expression of p!6 in hippocampal neurons increases NMDAR activity, the number of PSD-95 punctae, and the number of dendritic spines. Hence, p!6 may be involved in the manifestation of the altered phenotype of NR3A KO mice.
The Specific Aims of Project III are ? 1. To examine properties of synaptic transmission and plasticity (long-term potentiation [LTP] and long-term depression [LTD]) in slice preparations from NR3A/3B KO and Tg mice. 2. To examine neuronal damage in vivo following hypoxia/ischemia in NR3A KO and NR3A/3B Tg mice. 3. To examine molecular, functional, and structural properties of p!6, the product of a novel gene family that is upregulated in NR3A KO mice.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Research Program Projects (P01)
Project #
Application #
Study Section
Pediatrics Subcommittee (CHHD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Sanford-Burnham Medical Research Institute
La Jolla
United States
Zip Code
Akhtar, Mohd Waseem; Sanz-Blasco, Sara; Dolatabadi, Nima et al. (2016) Elevated glucose and oligomeric β-amyloid disrupt synapses via a common pathway of aberrant protein S-nitrosylation. Nat Commun 7:10242
Nakamura, Tomohiro; Lipton, Stuart A (2016) Protein S-Nitrosylation as a Therapeutic Target for Neurodegenerative Diseases. Trends Pharmacol Sci 37:73-84
Nakanishi, Nobuki; Kang, Yeon-Joo; Tu, Shichun et al. (2016) Differential Effects of Pharmacologic and Genetic Modulation of NMDA Receptor Activity on HIV/gp120-Induced Neuronal Damage in an In Vivo Mouse Model. J Mol Neurosci 58:59-65
Sanz-Blasco, Sara; Piña-Crespo, Juan C; Zhang, Xiaofei et al. (2016) Levetiracetam inhibits oligomeric Aβ-induced glutamate release from human astrocytes. Neuroreport 27:705-9
Nakamura, Tomohiro; Lipton, Stuart A (2016) Nitrosative Stress in the Nervous System: Guidelines for Designing Experimental Strategies to Study Protein S-Nitrosylation. Neurochem Res 41:510-4
Sunico, Carmen R; Sultan, Abdullah; Nakamura, Tomohiro et al. (2016) Role of sulfiredoxin as a peroxiredoxin-2 denitrosylase in human iPSC-derived dopaminergic neurons. Proc Natl Acad Sci U S A 113:E7564-E7571
Nakamura, Tomohiro; Prikhodko, Olga A; Pirie, Elaine et al. (2015) Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases. Neurobiol Dis 84:99-108
Satoh, Takumi; Stalder, Romain; McKercher, Scott R et al. (2015) Nrf2 and HSF-1 Pathway Activation via Hydroquinone-Based Proelectrophilic Small Molecules is Regulated by Electrochemical Oxidation Potential. ASN Neuro 7:
Galluzzi, L; Bravo-San Pedro, J M; Vitale, I et al. (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22:58-73
Zhang, Dongxian; Lee, Brian; Nutter, Anthony et al. (2015) Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid. J Neurochem 133:898-908

Showing the most recent 10 out of 162 publications