There are no generalizable rational treatments for patients with mitochondrial diseases. We propose here to study two new approaches to treat patients with mitochondrial diseases due to mutations in mtDNA. First, we have found that rapamycin (Sirolimus), an FDA-approved drug that induces autophagy, selectively targets mitochondria containing mutated mtDNAs, but not those harboring normal mtDNAs, for autophagic destruction. We will therefore examine the ability of rapamycin to restore mitochondrial function in heteroplasmic cells ("heteroplasmic shifting"), and use biochemical, functional, and microarray-based approaches to determine how mutant mtDNAs and dysfunctional mitochondria are recognized and degraded by the cell's autophagic machinery. Second, we have found that a number of analogs of CoQ and vitamin E developed by Edison Pharmaceuticals can rescue the viability of cells from patients with MELAS ("functional rescue"). We will therefore study Edison compounds in patient cells harboring various pathogenic mtDNA mutations in greater detail, and will also try to determine the mechanism by which these compounds work, using biochemical and genetic approaches. If successful, use of both rapamycin and Edison compounds could be the the basis of the first rational treatments of mtDNA-based OxPhos diseases.

Public Health Relevance

There are no rational treatments for mitochondrial disorders due to mutations in mtDNA. Our finding that rapamycin can target and destroy delsctively mitochondria harboring mutated, but not wild-type, mtDNAs and that new analogs of CoQ and vitamin E developed by Edison Pharmaceuticals can improve viability of heteroplasmic cells harboring mutated mtDNAs, hold out the promise that such treatments may be possible.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHD1-MRG-C)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Columbia University (N.Y.)
New York
United States
Zip Code
Peverelli, Lorenzo; Gold, Carl A; Naini, Ali B et al. (2014) Mitochondrial myopathy with dystrophic features due to a novel mutation in the MTTM gene. Muscle Nerve 50:292-5
Tyynismaa, Henna; Schon, Eric A (2014) Mixing and matching mitochondrial aminoacyl synthetases and their tRNAs: a new way to treat respiratory chain disorders? EMBO Mol Med 6:155-7
Levy, Rebecca J; Ríos, Purificación Gutierrez; Akman, Hasan O et al. (2014) Long survival in patients with leigh syndrome and the m.10191T>C mutation in MT-ND3 : a case report and review of the literature. J Child Neurol 29:NP105-10
Yien, Yvette Y; Robledo, Raymond F; Schultz, Iman J et al. (2014) TMEM14C is required for erythroid mitochondrial heme metabolism. J Clin Invest 124:4294-304
Area-Gomez, Estela; Schon, Eric A (2014) Mitochondrial genetics and disease. J Child Neurol 29:1208-15
Weiduschat, Nora; Kaufmann, Petra; Mao, Xiangling et al. (2014) Cerebral metabolic abnormalities in A3243G mitochondrial DNA mutation carriers. Neurology 82:798-805
Garcia-Diaz, Beatriz; Garone, Caterina; Barca, Emanuele et al. (2014) Deoxynucleoside stress exacerbates the phenotype of a mouse model of mitochondrial neurogastrointestinal encephalopathy. Brain 137:1337-49
Garone, Caterina; Garcia-Diaz, Beatriz; Emmanuele, Valentina et al. (2014) Deoxypyrimidine monophosphate bypass therapy for thymidine kinase 2 deficiency. EMBO Mol Med 6:1016-27
DiMauro, Salvatore (2013) Mitochondrial encephalomyopathies--fifty years on: the Robert Wartenberg Lecture. Neurology 81:281-91
Emmanuele, Valentina; Sotiriou, Evangelia; Rios, Purificacion Gutierrez et al. (2013) A novel mutation in the mitochondrial DNA cytochrome b gene (MTCYB) in a patient with mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes syndrome. J Child Neurol 28:236-42

Showing the most recent 10 out of 217 publications