; Throughout life, the nervous system acquires and maintains many different motor skills. These skills rely on the spinal circuits that determine the interactions between the spinal cord, which excites the muscles, and the peripheral apparatus that produces movements and provides sensory feedback. It is now clear that the brain continually adjusts these circuits to support new skills, to maintain older skills, and to reduce the functional impact of aging, trauma, and disease. The goal of this project is to advance understanding of how the brain exerts the long-term control over these circuits that keeps the spinal cord and the periphery working together effectively, and to apply that understanding to develop new therapeutic methods. Animals and humans can gradually change the spinal stretch reflex (SSR) or its electrical analog, the Hreflex, in response to an operant conditioning protocol. These reflex changes are simple motor skills (i.e.,

Public Health Relevance

This work should help to explain how brain and spinal cord work together to maintain effective spinal musculoskeletal interactions. They should also guide development of new methods for restoring effective interactions and thereby improving function after trauma or disease. Reflex conditioning protocols could target the specific deficits of each individual, and might thereby complement existing rehabilitation methods.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
2P01HD032571-16
Application #
8353704
Study Section
Special Emphasis Panel (ZHD1-RRG-K (40))
Project Start
1997-02-01
Project End
2017-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
16
Fiscal Year
2012
Total Cost
$213,039
Indirect Cost
Name
Emory University
Department
Type
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Zhu, Xiya; Ward, Patricia J; English, Arthur W (2016) Selective Requirement for Maintenance of Synaptic Contacts onto Motoneurons by Target-Derived trkB Receptors. Neural Plast 2016:2371893
Gordon, Tessa; English, Arthur W (2016) Strategies to promote peripheral nerve regeneration: electrical stimulation and/or exercise. Eur J Neurosci 43:336-50
Chen, Xiang Yang; Wang, Yu; Chen, Yi et al. (2016) Ablation of the inferior olive prevents H-reflex down-conditioning in rats. J Neurophysiol 115:1630-6
Mehta, Ricky; Maas, Huub; Gregor, Robert J et al. (2015) Unexpected Fascicle Length Changes In Denervated Feline Soleus Muscle During Stance Phase Of Walking. Sci Rep 5:17619
Brandt, Jaclyn; Evans, Jonathan T; Mildenhall, Taylor et al. (2015) Delaying the onset of treadmill exercise following peripheral nerve injury has different effects on axon regeneration and motoneuron synaptic plasticity. J Neurophysiol 113:2390-9
Krakowiak, Joey; Liu, Caiyue; Papudesu, Chandana et al. (2015) Neuronal BDNF signaling is necessary for the effects of treadmill exercise on synaptic stripping of axotomized motoneurons. Neural Plast 2015:392591
Farrell, Brad J; Bulgakova, Margarita A; Sirota, Mikhail G et al. (2015) Accurate stepping on a narrow path: mechanics, EMG, and motor cortex activity in the cat. J Neurophysiol 114:2682-702
Lyle, M A; Valero-Cuevas, F J; Gregor, R J et al. (2015) Lower extremity dexterity is associated with agility in adolescent soccer athletes. Scand J Med Sci Sports 25:81-8
Sabatier, Manning J; English, Arthur W (2015) Pathways Mediating Activity-Induced Enhancement of Recovery From Peripheral Nerve Injury. Exerc Sport Sci Rev 43:163-71
Liu, Caiyue; Ward, Patricia J; English, Arthur W (2014) The effects of exercise on synaptic stripping require androgen receptor signaling. PLoS One 9:e98633

Showing the most recent 10 out of 82 publications