During pregnancy, dramatic growth of fetal and placental vasculatures is required for remarkable increases in fetal and placental blood flows to supporting the developing fetus. During these processes, vascular endothelial cells reside under physiological chronic hypoxia (pCH), which is critical for cell homeostasis as more severe hypoxia is known to be associated with many endothelial dysfunction related diseases such hypertension and preeclampsia. VEGF and FGF2, two potent growth factors actively regulate many endothelial functions via protein kinases and also via G proteins including GNA11 and GNA14. Specifically, GNA11 has been shown to be required for VEGF-simulated growth of new blood vessels. GNA14 has also been implicated in human hypertension and preeclampsia. However, nothing is known regarding the actions of GNA14 in endothelial cells. To study the roles and underlying signaling mechanisms of GNA14 and GNA11 in mediating fetal endothelial functions, we propose to examine the roles of GNA14 and GNA11 in modulating pCH-enhanced vascular growth and vasodilatory actions in response to VEGF and FGF2 using primary HUVE and HUAE cell lines established under pCH (-20-25 days;37 C, 5% C02, 3% 02) and standard cell culture normoxia (-20-25 days;37 C, 5% C02, 95% air, SCCN). These studies are the first to systemically explore the role of GNA14 in mediating endothelial functions, and the role of GNA11 in mediating eNOS expression and activation. The findings of these studies will greatly advance our understanding of actions of GNA14 and GNA11 in human fetal angiogenic and endothelial vasodilatory functions, particularity under pCH, which will provide clues about novel targets for therapeutic intervention in these hypertension-related diseases.

Public Health Relevance

Normal fetal vascular growth and function are critical for fetal growth. G-protein subunits GNA11 and 14 have been implicated in mediating vascular growth and hypertension;however, little is known about their actions in endothelial cells. Thus, the goal of this application is to examine physiological roles of GNA14 and GNA11 in fetal endothelia, which will provide additional novel signaling therapeutic targets.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHD1-DSR-Z (MR))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Wisconsin Madison
United States
Zip Code
Schreier, David A; Forouzan, Omid; Hacker, Timothy A et al. (2016) Increased Red Blood Cell Stiffness Increases Pulmonary Vascular Resistance and Pulmonary Arterial Pressure. J Biomech Eng 138:021012
Ampey, Bryan C; Morschauser, Timothy J; Ramadoss, Jayanth et al. (2016) Domain-Specific Partitioning of Uterine Artery Endothelial Connexin43 and Caveolin-1. Hypertension 68:982-8
Pastore, Mayra B; Talwar, Saira; Conley, Meghan R et al. (2016) Identification of Differential ER-Alpha Versus ER-Beta Mediated Activation of eNOS in Ovine Uterine Artery Endothelial Cells. Biol Reprod 94:139
Rozner, Ann E; Durning, Maureen; Kropp, Jenna et al. (2016) Macrophages modulate the growth and differentiation of rhesus monkey embryonic trophoblasts. Am J Reprod Immunol 76:364-375
Li, Yan; Wang, Kai; Zou, Qing-Yun et al. (2015) 2,3,7,8-Tetrachlorodibenzo-p-dioxin differentially suppresses angiogenic responses in human placental vein and artery endothelial cells. Toxicology 336:70-8
Morris, Erin A; Hale, Sarah A; Badger, Gary J et al. (2015) Pregnancy induces persistent changes in vascular compliance in primiparous women. Am J Obstet Gynecol 212:633.e1-6
Boeldt, Derek S; Grummer, Mary A; Yi, FuXian et al. (2015) Phosphorylation of Ser-279/282 and Tyr-265 positions on Cx43 as possible mediators of VEGF-165 inhibition of pregnancy-adapted Ca2+ burst function in ovine uterine artery endothelial cells. Mol Cell Endocrinol 412:73-84
Li, Yan; Wang, Kai; Zou, Qing-Yun et al. (2015) A possible role of aryl hydrocarbon receptor in spontaneous preterm birth. Med Hypotheses 84:494-7
Ampey, Bryan; Bird, Ian; Magness, Ron (2015) [307-POS]: Cx43 phosphorylation and the functionality of Cx43 gap junctions are moderated by cyclic nucleotide activity in UAECs and HUVECs. Pregnancy Hypertens 5:151-2
Anaya, Heather A; Yi, Fu-Xian; Boeldt, Derek S et al. (2015) Changes in Ca2+ Signaling and Nitric Oxide Output by Human Umbilical Vein Endothelium in Diabetic and Gestational Diabetic Pregnancies. Biol Reprod 93:60

Showing the most recent 10 out of 72 publications