We propose to leverage recent advances in computer technology and algorithm development, together with the growing database of three-dimensional (3D) structures of Vitamin K-dependent (VKD) proteins and their complexes, to build reliable 3D complexes in electrically neutral solvent and with structural water molecules in place. It is our hypothesis that theoretical techniques are now at a level of sophistication and accuracy to warrant the judicious application to key coagulation systems: the prothrombin-prothombinase complex, which provides the penultimate step in the cascade (formation of thrombin) and the extrinsic tenase complex, which initiates the extrinsic blood coagulation cascade. We propose to provide solvent-equilibrated models for these systems. The plan:
AIM I : To model the prothrombinase-prothrombin complex, including the apparently flexible central fragment involving the kringle domains of prothrombin?the goal being to understand the molecular details of the multiple cleavages;
AIM : To complete a consensus model of TF/FVIIa/FXa followed by model studies of TFalone, TF as a dimer, and TF and its putative complexes with protein disulfide isomerase (PDI) (also to be modeled), glutathione and NO?the goal being to understand more completely the issues surrounding cryptic vs procoagulant TF;
AIM III : To complete a model study with solvation of the Vitamin K cycle reactions (enzymes: vitamin K carboxylase and vitamin K epoxide reductase) using quantum mechanics.
The final aim recognizes the need to not only develop all-atom, solvated, 3D structures, but also to provide insight into the quantum mechanical bond-breaking and bond-forming mechanisms that regulate coagulation. Underlying our applied work is the continual development of new techniques?modeling the interaction of protein domains to membrane surfaces( e.g. Gla domains to phospholipid surfaces rich in phosphatidylserine), improving protein-protein docking algorithms, modeling conformational changes in proteins (e.g. the conformational change of the C2 domain of Factor Va when binding to a membrane surface, FVIIa when binding TF, the Gla domain when binding calcium ions) and improving molecular dynamics methods. The developed complex structures will be made available through the internet and these will maintain value as a base for systematic improvement even as new experimental structures are solved.

Public Health Relevance

The study of molecular processes in the blood coagulation cascade (here: prothrombin, factor Vila/Tissue factor, Vitamin K cycle) have high relevance to public health. These molecular processes have impact in many blood diseases, including hemophilia, stroke and plaque in the vascular system. Our research is aimed directly at understanding the molecular processes of normal and abnormal blood coagulation.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Bode, Michael; Mackman, Nigel (2014) Regulation of tissue factor gene expression in monocytes and endothelial cells: Thromboxane A2 as a new player. Vascul Pharmacol 62:57-62
Parker, Christine H; Morgan, Christopher R; Rand, Kasper D et al. (2014) A conformational investigation of propeptide binding to the integral membrane protein ?-glutamyl carboxylase using nanodisc hydrogen exchange mass spectrometry. Biochemistry 53:1511-20
Feng, D; Stafford, K A; Broze, G J et al. (2013) Evidence of clinically significant extravascular stores of factor IX. J Thromb Haemost 11:2176-8
Owens 3rd, A Phillip; Mackman, Nigel (2012) Sources of tissue factor that contribute to thrombosis after rupture of an atherosclerotic plaque. Thromb Res 129 Suppl 2:S30-3
Owens 3rd, A Phillip; Passam, Freda H; Antoniak, Silvio et al. (2012) Monocyte tissue factor-dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin. J Clin Invest 122:558-68
Wu, Sangwook; Liu, Shubin; Davis, Charles H et al. (2011) A hetero-dimer model for concerted action of vitamin K carboxylase and vitamin K reductase in vitamin K cycle. J Theor Biol 279:143-9
Owens 3rd, A Phillip; Mackman, Nigel (2011) Microparticles in hemostasis and thrombosis. Circ Res 108:1284-97
Monroe, Dougald M; Mackman, Nigel; Hoffman, Maureane (2010) Wound healing in hemophilia B mice and low tissue factor mice. Thromb Res 125 Suppl 1:S74-7
Mackman, Nigel; Becker, Richard C (2010) DVT: a new era in anticoagulant therapy. Arterioscler Thromb Vasc Biol 30:369-71
de Courcy, B; Pedersen, L G; Parisel, O et al. (2010) Understanding selectivity of hard and soft metal cations within biological systems using the subvalence concept. I. Application to blood coagulation: direct cation-protein electronic effects vs. indirect interactions through water networks. J Chem Theory Comput 6:1048-1063

Showing the most recent 10 out of 28 publications