The Tissue Culture Core Laboratory will be responsible for providing investigators with cultured cells, antibodies, and facilities for routine microscopy of biological samples. The core will be directed by Dr. Goldstein. He will be assisted by Drs. Y.K. Ho, Guosheng Liang, and Rob Rawson. The technical work in the Tissue Culture Facility of this Core is carried out by five experienced technicians (Lisa Beatty, Angela Carroll, Shomanike Head, Ijeoma Onwuneme, Muleya Kapaale) and one laboratory assistant (Dawn Rollins). The Tissue Culture Facility is located in the Department of Molecular Genetics and consists of three suites of rooms that are used solely for tissue culture. One suite contains four work modules that open into a common work area;the second suite contains three work modules that open into a common work area;and the third suite contains two work modules, one for adenovirus work and the other for baculovirus. Each module is equipped with a sterile work area (Biological Safety Cabinet hood), one or more CO2 incubators, a refrigerator, and an inverted microscope. The common work area in each of the suites contains one or two sterile work areas. The entire facility contains 14 inverted microscopes (6 of which are phase-contrast microscopes), 1 stereo microscope, 16 sterile work areas (hoods), 33 single-chamber CO2 incubators, 1 single-chamber multigas incubator, 2 non-C02 refrigerated incubators, 1 roller bottle incubator, 3 refrigerated incubator shakers, 4 table-top refrigerated centrifuges, and 11 refrigerators. Five liquid nitrogen freezers for storage of cell lines are located in the common work area adjacent to the work modules. In addition to this standard equipment, we have a Zeiss Axiovert 35 M inverted fluorescence microscope that allows us to visualize cells directly in the Petri dish (under sterile conditions) so as to determine whether or not they have taken up reconstituted fluorescent LDL or other fluorescent molecules.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Sw Medical Center Dallas
United States
Zip Code
Stender, Stefan; Smagris, Eriks; Lauridsen, Bo K et al. (2018) Relationship between genetic variation at PPP1R3B and levels of liver glycogen and triglyceride. Hepatology 67:2182-2195
Schumacher, Marc M; Jun, Dong-Jae; Johnson, Brittany M et al. (2018) UbiA prenyltransferase domain-containing protein-1 modulates HMG-CoA reductase degradation to coordinate synthesis of sterol and nonsterol isoprenoids. J Biol Chem 293:312-323
Mitsche, Matthew A; Hobbs, Helen H; Cohen, Jonathan C (2018) Patatin-like phospholipase domain-containing protein 3 promotes transfer of essential fatty acids from triglycerides to phospholipids in hepatic lipid droplets. J Biol Chem 293:6958-6968
Banfi, Serena; Gusarova, Viktoria; Gromada, Jesper et al. (2018) Increased thermogenesis by a noncanonical pathway in ANGPTL3/8-deficient mice. Proc Natl Acad Sci U S A 115:E1249-E1258
Fine, Michael; Schmiege, Philip; Li, Xiaochun (2018) Structural basis for PtdInsP2-mediated human TRPML1 regulation. Nat Commun 9:4192
Linden, Albert G; Li, Shili; Choi, Hwa Y et al. (2018) Interplay between ChREBP and SREBP-1c coordinates postprandial glycolysis and lipogenesis in livers of mice. J Lipid Res 59:475-487
Johnson, Brittany M; DeBose-Boyd, Russell A (2018) Underlying mechanisms for sterol-induced ubiquitination and ER-associated degradation of HMG CoA reductase. Semin Cell Dev Biol 81:121-128
Qi, Xiaofeng; Schmiege, Philip; Coutavas, Elias et al. (2018) Two Patched molecules engage distinct sites on Hedgehog yielding a signaling-competent complex. Science 362:
Engelking, Luke J; Cantoria, Mary Jo; Xu, Yanchao et al. (2018) Developmental and extrahepatic physiological functions of SREBP pathway genes in mice. Semin Cell Dev Biol 81:98-109
Hobbs, Helen H (2018) Science, serendipity, and the single degree. J Clin Invest 128:4218-4223

Showing the most recent 10 out of 766 publications