The Microscopy and Image Analysis Core, which serves all investigators in the Program Project, consolidates tissue preparation, microscopy, and image analysis in the same laboratory, under the direction of staff with appropriate expertise. The laboratory provides investigators and their associates with the expertise, equipment, supplies, and, when appropriate, the training needed for morphologic aspects of their research. The Core Facility is located within the laboratory space at the Laurel Heights Campus. The equipment in the Facility includes: an electron microscope, cryostat, ultramicrotome, immunofluorescence microscope, confocal microscopic analysis system, digital and film cameras, image analysis systems, and a fully equipped photographic darkroom (important for electron microscopy). The Core facility has been in continuous operation since 1994. This facility ensures that specialized equipment is always available in good working order and technical expertise is readily available. The Core Facility as currently constituted enhances the ability of the Core staff to provide individual attention to the particular problems involved in individual projects. It has been critical to the performance of morphologic analyses among the individual projects of the Program Project Grant.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL024075-33
Application #
8463930
Study Section
Special Emphasis Panel (ZHL1-PPG-S)
Project Start
Project End
Budget Start
2013-01-01
Budget End
2013-12-31
Support Year
33
Fiscal Year
2013
Total Cost
$156,094
Indirect Cost
$55,062
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Danhaive, Olivier; Chapin, Cheryl; Horneman, Hart et al. (2015) Surface film formation in vitro by infant and therapeutic surfactants: role of surfactant protein B. Pediatr Res 77:340-6
LaFemina, Michael J; Sutherland, Katherine M; Bentley, Trevor et al. (2014) Claudin-18 deficiency results in alveolar barrier dysfunction and impaired alveologenesis in mice. Am J Respir Cell Mol Biol 51:550-8
Gonzalez, Robert F; Dobbs, Leland G (2013) Isolation and culture of alveolar epithelial Type I and Type II cells from rat lungs. Methods Mol Biol 945:145-59
Chapin, Cheryl; Bailey, Nicole A; Gonzales, Linda W et al. (2012) Distribution and surfactant association of carcinoembryonic cell adhesion molecule 6 in human lung. Am J Physiol Lung Cell Mol Physiol 302:L216-25
Heine, Vivi M; Griveau, Amelie; Chapin, Cheryl et al. (2011) A small-molecule smoothened agonist prevents glucocorticoid-induced neonatal cerebellar injury. Sci Transl Med 3:105ra104
Gonzalez, Robert F; Allen, Lennell; Gonzales, Linda et al. (2010) HTII-280, a biomarker specific to the apical plasma membrane of human lung alveolar type II cells. J Histochem Cytochem 58:891-901
Gonzalez, Robert F; Allen, Lennell; Dobbs, Leland G (2009) Rat alveolar type I cells proliferate, express OCT-4, and exhibit phenotypic plasticity in vitro. Am J Physiol Lung Cell Mol Physiol 297:L1045-55
Mun, James J; Tam, Connie; Kowbel, David et al. (2009) Clearance of Pseudomonas aeruginosa from a healthy ocular surface involves surfactant protein D and is compromised by bacterial elastase in a murine null-infection model. Infect Immun 77:2392-8
Johnson, Meshell; Allen, Lennell; Dobbs, Leland (2009) Characteristics of Cl- uptake in rat alveolar type I cells. Am J Physiol Lung Cell Mol Physiol 297:L816-27
Vanderbilt, Jeff N; Allen, Lennell; Gonzalez, Robert F et al. (2008) Directed expression of transgenes to alveolar type I cells in the mouse. Am J Respir Cell Mol Biol 39:253-62

Showing the most recent 10 out of 172 publications