Our studies have demonstrated that phospholipid oxidation products (Ox-PAPC) which accumulate in atherosclerotic lesions are important regulators of endothelial cell function, affecting mRNA levels of over 1000 genes involving inflammation, sterol regulation, coagulation, oxidative stress, cell cycle, angiogenesis, redox regulation and the unfolded protein response. The inflammatory response to Ox-PAPC and to its component lipid PEIPC was shown to differ significantly from those of IPS and TNF, leading to a chronic upregulation of monocyte-endothelial interactions. A major goal of the proposed studies is to identify the pivotal regulators of the Ox-PAPC/PEIPC network using cell biology and bioinformatics approaches.
In Aim 1 we will use a cell biology approach to test three aspects of the basic signaling mechanism activated by Ox- PAPC and PEIPC. We will: define additional components of the Ox-PAPC receptor complex;determine how Ox-PAPC and PEIPC alter the cellular redox balance to contol gene expression;and determine whether covalent binding of PEIPC to proteins is important in activation.
In Aim 2, we will use an integrative genetics approach to define the overall network at the transcript level, leveraging the concept that common genetic variations in the population can be used to organize expression array data into biologically relevant modules. We will map the genes contributing to common variation in the network using genome-wide association and integrate the data with orthogonal proteomic and functional datasets.
Aims 1 and 2 will also include validation of important regulators by use of siRNA and in some cases overexpression.
In Aim 3 we will determine whether endothelial expression of three important network regulators (SREBP, STAT3 and HO-1) plays an important role in atherosclerosis in mice. For these studies, we will employ LDL receptor null mice with endothelial specific knockout of these proteins. In addition, inflammatory areas of human lesions will be examined for expression and activation of these molecules and others we find to regulate the network. Together, these studies will identify potential endothelial targets for the control of atherosclerosis.

Public Health Relevance

Oxidized phospholipids accumulate in atherosclerotic lesions and likely contribute to initiating and sustaining the disease. These studies will determine the mechanism of endothelial cell activation by these lipids to initiate inflammation and thrombosis. In addition they will identify genetic polymorphisms that contribute to endothelial activation for use as prognostic and therapeutic targets.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Los Angeles
United States
Zip Code
Yan, Xinmin; Lee, Sangderk; Gugiu, B Gabriel et al. (2014) Fatty acid epoxyisoprostane E2 stimulates an oxidative stress response in endothelial cells. Biochem Biophys Res Commun 444:69-74
Joo, Jong Wha J; Sul, Jae Hoon; Han, Buhm et al. (2014) Effectively identifying regulatory hotspots while capturing expression heterogeneity in gene expression studies. Genome Biol 15:r61
Mangul, Serghei; Caciula, Adrian; Al Seesi, Sahar et al. (2014) Transcriptome assembly and quantification from Ion Torrent RNA-Seq data. BMC Genomics 15 Suppl 5:S7
Albright, Jody; Quizon, Pamela M; Lusis, Aldons J et al. (2014) Genetic network identifies novel pathways contributing to atherosclerosis susceptibility in the innominate artery. BMC Med Genomics 7:51
Hormozdiari, Farhad; Kostem, Emrah; Kang, Eun Yong et al. (2014) Identifying causal variants at loci with multiple signals of association. Genetics 198:497-508
L├╝scher, Thomas F; Landmesser, Ulf; von Eckardstein, Arnold et al. (2014) High-density lipoprotein: vascular protective effects, dysfunction, and potential as therapeutic target. Circ Res 114:171-82
Jumabay, Medet; Abdmaulen, Raushan; Ly, Albert et al. (2014) Pluripotent stem cells derived from mouse and human white mature adipocytes. Stem Cells Transl Med 3:161-71
Ghazalpour, Anatole; Bennett, Brian J; Shih, Diana et al. (2014) Genetic regulation of mouse liver metabolite levels. Mol Syst Biol 10:730
Han, Buhm; Kang, Eun Yong; Raychaudhuri, Soumya et al. (2014) Fast pairwise IBD association testing in genome-wide association studies. Bioinformatics 30:206-13
Hasin-Brumshtein, Yehudit; Hormozdiari, Farhad; Martin, Lisa et al. (2014) Allele-specific expression and eQTL analysis in mouse adipose tissue. BMC Genomics 15:471

Showing the most recent 10 out of 638 publications