Disorders of ineffective erythropoiesis cause considerable human morbidity and utilize major health resources. A major barrier to the design of novel treatment strategies is an incomplete understanding of the molecular mechanisms that mediate normal terminal erythroid maturation. The transcription factor GATA-1 is a master regulator of erythropoiesis. In 2004, Weiss and colleagues showed that GATA-1 not only activates many erythroid-specific genes, but also represses nearly an equal number. Subsequent studies showed that both the activated and repressed genes are directly controlled by GATA-1. This has led to two major unanswered questions in the field: (1) how does GATA-1 distinguish between activated and repressed genes? And (2) how does GATA-1 carry out these opposing transcriptional functions? Our long-term obiective is to further elucidate these mechanisms and apply this information to better understand and treat human ineffective erythropoietic disorders. As a first step, we recently performed GATA-1 ChlP-seq and cDNA microarray analysis in murine erythroid cells to identify genome-wide direct functional GATA-1 target genes. This provided a large dataset of activated (454) and repressed (325) GATA-1 target genes and their GATA-1 bound cis-regulatory elements. Bioinformatic analysis revealed candidate features that distinguish GATA-1 activated versus repressed genes. Consistent with the recent work of others, we found that combinatorial occupancy by SCL complexes strongly correlates with gene activation. However, the simple presence of composite GATA:E-box (SCL binding) DNA binding motifs by themselves does not fully distinguish between activated and repressed genes. Therefore, additional information must be required to specify GATA-1 activated genes.
The specific aims of this proposal are to: (1) identify additional factors that cooperate with SCL to distinguish between activated and repressed GATA-1 target genes;and (2) further understand the mechanisms by which SCL co-occupancy results in GATA-1 positive transcriptional activity. Based on our preliminary studies, we hypothesize that certain GC-rich and CAAT binding transcription factors contribute to distinguishing GATA-1 activated genes. We also hypothesize that SCL complexes block interactions between GATA-1 and Polycomb Repressive Complex 2, and recruit positive transcriptional elongation regulators. These hypotheses will be tested using ChlP-seq, gene expression analysis, transgenic reporter assays, and biochemical techniques. The expected outcome from these studies is the identification of novel mechanisms involved in specifying GATA-1 gene activation versus repression.

Public Health Relevance

GATA-1 is a master transcriptional regulator of erythroid development, and is mutated in certain human ineffective erythropoietic disorders. This project is therefore central to the overall theme ofthe program project grant;namely the developmental biology of human erythropoiesis. It dovetails with the other projects on this grant through its study of GATA-1 target genes, its use of complementary approaches/datasets, and its examination of transcriptional elongation regulatory mechanisms in erythroid maturation.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Children's Hospital Boston
United States
Zip Code
Pishesha, Novalia; Thiru, Prathapan; Shi, Jiahai et al. (2014) Transcriptional divergence and conservation of human and mouse erythropoiesis. Proc Natl Acad Sci U S A 111:4103-8
Alvarez-Dominguez, Juan R; Hu, Wenqian; Gromatzky, Austin A et al. (2014) Long noncoding RNAs during normal and malignant hematopoiesis. Int J Hematol 99:531-41
Ludwig, Leif S; Gazda, Hanna T; Eng, Jennifer C et al. (2014) Altered translation of GATA1 in Diamond-Blackfan anemia. Nat Med 20:748-53
Chen, Cynthia; Lodish, Harvey F (2014) Global analysis of induced transcription factors and cofactors identifies Tfdp2 as an essential coregulator during terminal erythropoiesis. Exp Hematol 42:464-76.e5
Hagedorn, Elliott J; Durand, Ellen M; Fast, Eva M et al. (2014) Getting more for your marrow: boosting hematopoietic stem cell numbers with PGE2. Exp Cell Res 329:220-6
Yien, Yvette Y; Robledo, Raymond F; Schultz, Iman J et al. (2014) TMEM14C is required for erythroid mitochondrial heme metabolism. J Clin Invest 124:4294-304
Cheng, Albert W; Shi, Jiahai; Wong, Piu et al. (2014) Muscleblind-like 1 (Mbnl1) regulates pre-mRNA alternative splicing during terminal erythropoiesis. Blood 124:598-610
Shmukler, Boris E; Reimold, Fabian R; Heneghan, John F et al. (2014) Molecular cloning and functional characterization of zebrafish Slc4a3/Ae3 anion exchanger. Pflugers Arch 466:1605-18
Hu, Wenqian; Yuan, Bingbing; Lodish, Harvey F (2014) Cpeb4-mediated translational regulatory circuitry controls terminal erythroid differentiation. Dev Cell 30:660-72
Chung, Jacky; Anderson, Sheila A; Gwynn, Babette et al. (2014) Iron regulatory protein-1 protects against mitoferrin-1-deficient porphyria. J Biol Chem 289:7835-43

Showing the most recent 10 out of 113 publications