Hemophilia A has been widely studied, and gene therapy has been a clinical approach carried out in animal models and some human clinical trials. Since standard approaches for treating hemophilia A have yet to be successful, alternative novel strategies are thought to be needed. One such approach has been developed in this grant during the past funding cycle, and has focused on expressing FVIII in megakaryo?? cytes and endothelial cells. The natural interactions between VWF and FVIII might facilitate the expression of FVIII and make use of these interactions clinically. This grant has three aims that explore the interactions between FVIII and VWF, and how this could lead to strategies to optimize gene therapy for hemophilia. Even more exciting, this approach might be advantageous for hemophilic patients who have developed treatment-altering inhibitory antibodies.
Aim 1 will study the local and systemic effect of VWF complexes with FVIII in the presence of specific FVIII inhibitory antibodies, and determine the safety of delivering FVIII in platelets.
Aim 2 will study the delivery of FVIII in platelets, and determine its efficacy in a large animal model of hemophilia.
Aim 3 will study a gene therapy approach in which FVIII is synthesized in and stored by endothelial cells, and whether endothelial cells normally synthesize FVIII. These models will dissect the contribution of VWF to the therapeutic efficacy of FVIII in the presence of inhibitory antibodies. Since the murine and canine models are less severe clinical models than the human disorder, and because dog platelets normally lack VWF. another animal model with platelet VWF is needed. The ovine model of hemophilia provides just such a model characterized by clinical severe bleeding, normal VWF in its platelets like humans, and most uniquely, the fetal ovine model has been demonstrated to permit long-term, life-long chimeric expression of human hematopoietic cells where human megakaryocytes/platelets, transduced to express and store FVIII, can be studied for safety and clinical efficacy. These studies will provide much additional critical safety and efficacy on this novel approach to gene therapy for hemophilia and provide a pre-clinical model of highest relevance before considering human trials.

Public Health Relevance

This grant addresses a novel strategy to carry out gene therapy of hemophilia, a severe clinical bleeding disorder. While most studies have targeted liver cells, our unique approach will targets the expressed FVIII to endothelial cells or megakaryocytes - cells that normally synthesize and store VWF. These approaches may not only treat patients with hemophilia, but also treat those patients that have high-titer inhibitory antibodies that would normally mitigate against traditional replacement therapy, or even traditional gene therapy approaches to replace FVIII in plasma.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL044612-23
Application #
8434893
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
23
Fiscal Year
2013
Total Cost
$406,880
Indirect Cost
$110,043
Name
Bloodcenter of Wisconsin, Inc.
Department
Type
DUNS #
057163172
City
Milwaukee
State
WI
Country
United States
Zip Code
53233
Newman, Debra K; Fu, Guoping; Adams, Tamara et al. (2016) The adhesion molecule PECAM-1 enhances the TGF-β-mediated inhibition of T cell function. Sci Signal 9:ra27
Chen, Yuhong; Zheng, Yongwei; You, Xiaona et al. (2016) Kras Is Critical for B Cell Lymphopoiesis. J Immunol 196:1678-85
Zhang, Nanyan; Zhi, Huiying; Curtis, Brian R et al. (2016) CRISPR/Cas9-mediated conversion of human platelet alloantigen allotypes. Blood 127:675-80
Baumgartner, C K; Mattson, J G; Weiler, H et al. (2016) Targeting Factor VIII expression to platelets for hemophilia A gene therapy does not induce an apparent thrombotic risk in mice. J Thromb Haemost :
Chen, Yingyu; Schroeder, Jocelyn A; Chen, Juan et al. (2016) The immunogenicity of platelet-derived FVIII in hemophilia A mice with or without preexisting anti-FVIII immunity. Blood 127:1346-54
Santoso, Sentot; Wihadmadyatami, Hevi; Bakchoul, Tamam et al. (2016) Antiendothelial αvβ3 Antibodies Are a Major Cause of Intracranial Bleeding in Fetal/Neonatal Alloimmune Thrombocytopenia. Arterioscler Thromb Vasc Biol 36:1517-24
Kerschen, E; Hernandez, I; Zogg, M et al. (2015) Survival advantage of heterozygous factor V Leiden carriers in murine sepsis. J Thromb Haemost 13:1073-80
Zheng, Yongwei; Yu, Mei; Padmanabhan, Anand et al. (2015) Critical role of CD4 T cells in PF4/heparin antibody production in mice. Blood 125:1826-9
Xin, Gang; Schauder, David M; Lainez, Begoña et al. (2015) A Critical Role of IL-21-Induced BATF in Sustaining CD8-T-Cell-Mediated Chronic Viral Control. Cell Rep 13:1118-24
Liang, Hai Po H; Kerschen, Edward J; Hernandez, Irene et al. (2015) EPCR-dependent PAR2 activation by the blood coagulation initiation complex regulates LPS-triggered interferon responses in mice. Blood 125:2845-54

Showing the most recent 10 out of 225 publications