Three members of the GATA family of zinc finger transcription factors, GATA-4, -5, and -6, are expressed within cardiac and smooth muscle cells in the developing cardiovascular system and have been shown to bind essential regulatory elements in the control regions of cardiac-specific genes. However, little is known of the regulatory factors that control GATA gene expression or of the mechanisms whereby GATA factors activate gene expression in developing cardiac or smooth muscle cells. The overall goal of this project is to define the functions of GATA factors during heart development and disease. Mice bearing null mutations in each of the GATA genes singly and in combination will be analyzed for cardiogenic defects. The regulatory elements that confer cardiac specificity to the GATA4 and -6 genes will also be identified and used to define the transcription factors that initiate cardiogenesis. The potential involvement of several GATA-interacting proteins in the control of cardiac gene expression will also be investigated. These studies will lead to a comprehensive understanding of the unique and potentially overlapping functions of GATA4, -5, and -6 during cardiovascular development and will provide insights into the transcriptional networks involved in normal and abnormal development of the cardiovascular system.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL049953-06
Application #
6272930
Study Section
Project Start
1998-05-01
Project End
1999-04-30
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
6
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Baylor College of Medicine
Department
Type
DUNS #
074615394
City
Houston
State
TX
Country
United States
Zip Code
77030
Liu, Yu; Kaneda, Ruri; Leja, Thomas W et al. (2014) Hhex and Cer1 mediate the Sox17 pathway for cardiac mesoderm formation in embryonic stem cells. Stem Cells 32:1515-26
Zeve, Daniel; Seo, Jin; Suh, Jae Myoung et al. (2012) Wnt signaling activation in adipose progenitors promotes insulin-independent muscle glucose uptake. Cell Metab 15:492-504
Verzi, Michael P; Stanfel, Monique N; Moses, Kelvin A et al. (2009) Role of the homeodomain transcription factor Bapx1 in mouse distal stomach development. Gastroenterology 136:1701-10
Shah, Viraj R; Koster, Maranke I; Roop, Dennis R et al. (2007) Double-inducible gene activation system for caspase 3 and 9 in epidermis. Genesis 45:194-9
Niu, Zhivy; Li, Ankang; Zhang, Shu X et al. (2007) Serum response factor micromanaging cardiogenesis. Curr Opin Cell Biol 19:618-27
Chang, Jiang; Xie, Min; Shah, Viraj R et al. (2006) Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proc Natl Acad Sci U S A 103:14495-500
Zhang, Ying-Min; Bo, Jacqueline; Taffet, George E et al. (2006) Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. FASEB J 20:916-25
Ilagan, Roger; Abu-Issa, Radwan; Brown, Doris et al. (2006) Fgf8 is required for anterior heart field development. Development 133:2435-45
Zhang, Shu Xing; Garcia-Gras, Eduardo; Wycuff, Diane R et al. (2005) Identification of direct serum-response factor gene targets during Me2SO-induced P19 cardiac cell differentiation. J Biol Chem 280:19115-26
Vlahopoulos, Spiros; Zimmer, Warren E; Jenster, Guido et al. (2005) Recruitment of the androgen receptor via serum response factor facilitates expression of a myogenic gene. J Biol Chem 280:7786-92

Showing the most recent 10 out of 70 publications