The administrative and Biostatistics Core is a critical node of the proposed research effort as it provides the infrastructural support for the efficient progression of the performed activities, the overall integration of the science across all projects, and the necessary surveillance and support for the proper design of experiments in rodents and clinical studies. Additional integrative resources within this Core include the management of travel requests, coordination of conference calls on a monthly basis, scheduling of an annual 2-day meeting for all investigators participating in the program, scheduling of meetings with members of the Internal and External Advisory Boards, and preparation of reports, manuscripts and presentations for all of the participating investigators. A second and vital component of the Core function is to provide support for the design and statistical evaluation of proposed studies and assist the investigators in the proper use and selection of statistical power and analysis approaches.
Specific Aims of Core A are:
Specific Aim 1. To provide administrative support and oversight of the science composing this program project.
Specific Aim 2. To provide biostatistical support for the basic science and clinical studies.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL051952-21A1
Application #
8794000
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
2020-03-31
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
21
Fiscal Year
2015
Total Cost
$358,307
Indirect Cost
$127,141
Name
Wake Forest University Health Sciences
Department
Type
DUNS #
937727907
City
Winston-Salem
State
NC
Country
United States
Zip Code
27157
Dell'Italia, Louis J; Collawn, James F; Ferrario, Carlos M (2018) Multifunctional Role of Chymase in Acute and Chronic Tissue Injury and Remodeling. Circ Res 122:319-336
Ahmad, Sarfaraz; Ferrario, Carlos M (2018) Chymase inhibitors for the treatment of cardiac diseases: a patent review (2010-2018). Expert Opin Ther Pat 28:755-764
Wang, Hao; Sun, Xuming; Lin, Marina S et al. (2018) G protein-coupled estrogen receptor (GPER) deficiency induces cardiac remodeling through oxidative stress. Transl Res 199:39-51
Ahmad, Sarfaraz; Sun, Xuming; Lin, Marina et al. (2018) Blunting of estrogen modulation of cardiac cellular chymase/RAS activity and function in SHR. J Cell Physiol 233:3330-3342
Li, Tiankai; Zhang, Xiaowei; Cheng, Heng-Jie et al. (2018) Critical role of the chymase/angiotensin-(1-12) axis in modulating cardiomyocyte contractility. Int J Cardiol 264:137-144
Wang, Hao; Sun, Xuming; Chou, Jeff et al. (2017) Inflammatory and mitochondrial gene expression data in GPER-deficient cardiomyocytes from male and female mice. Data Brief 10:465-473
Zhang, Xiaowei; Cheng, Heng-Jie; Zhou, Peng et al. (2017) Cellular basis of angiotensin-(1-7)-induced augmentation of left ventricular functional performance in heart failure. Int J Cardiol 236:405-412
Ola, Mohammad Shamsul; Alhomida, Abdullah S; Ferrario, Carlos M et al. (2017) Role of Tissue Renin-angiotensin System and the Chymase/angiotensin-( 1-12) Axis in the Pathogenesis of Diabetic Retinopathy. Curr Med Chem 24:3104-3114
Ferrario, Carlos M; Mullick, Adam E (2017) Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacol Res 125:57-71
Chappell, Mark C; Al Zayadneh, Ebaa M (2017) Angiotensin-(1-7) and the Regulation of Anti-Fibrotic Signaling Pathways. J Cell Signal 2:

Showing the most recent 10 out of 309 publications