Accumulation of misfolded protein within the endoplasmic reticulum (ER) is a central event leading to cell death that contributes to disease pathogenesis. Although proteins exhibit oxidative damage in diverse disease states, the relationship between protein misfolding and oxidative stress has not been explored. To elucidate the relationship between protein misfolding and oxidative stress, we have analyzed expression of the clotting factor VIII (FVIII), the protein deficient in hemophilia A and prone to misfolding. Although hemophilia A patients are treated by frequent infusions of plasma-derived or recombinant-derived FVIII, significant limitations remain. It is hoped that FVIII gene therapy will solve these problems. Unfortunately, limited clinical studies have not demonstrated expression of FVIII at therapeutic levels. At the cellular level FVIII expression is limited due to protein misfolding and retention in the ER. As a consequence, FVIII expression induces transcription of ER stress response genes, through an intracellular signaling pathway called the unfolded protein response (UPR). Our studies have shown that the chronic unresolved accumulation of unfolded FVIII in the ER leads to apoptosis in a manner that requires the proapoptotic transcription factor C/EBP homologous protein CHOP. Recently, we have demonstrated that FVIII misfolding causes oxidative stress and induces an inflammatory response. In addition, oxidative stress causes FVIII misfolding, thereby creating a vicious cycle between FVIII misfolding and oxidative stress. Profoundly, anti-oxidant treatment to reduce oxidative stress improves FVIII secretion and reduces apoptosis. These findings provide the basis of the proposed research to elucidate how FVIII induces apoptotic, oxidative, and inflammatory response pathways. The studies will test the hypothesis that FVIII expression is limited due to induction of these stress responses. Studies will test whether intervention to prevent these toxic responses may improve therapeutic efficacy in FVIII gene delivery for hemophilia A. The findings from the proposed studies will provide fundamental new insights toward elucidating how protein misfolding in the ER signals a cell death response and should have impact on a number of disease states associated with ER stress.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL057346-15
Application #
8450251
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
15
Fiscal Year
2013
Total Cost
$282,436
Indirect Cost
$54,860
Name
University of Michigan Ann Arbor
Department
Type
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Cao, Stewart Siyan; Kaufman, Randal J (2014) Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 21:396-413
Adams, Elizabeth J; Chen, Xiao-Wei; O'Shea, K Sue et al. (2014) Mammalian COPII coat component SEC24C is required for embryonic development in mice. J Biol Chem 289:20858-70
Everett, Lesley A; Cleuren, Audrey C A; Khoriaty, Rami N et al. (2014) Murine coagulation factor VIII is synthesized in endothelial cells. Blood 123:3697-705
Ferris, Sean P; Kodali, Vamsi K; Kaufman, Randal J (2014) Glycoprotein folding and quality-control mechanisms in protein-folding diseases. Dis Model Mech 7:331-41
Han, Jaeseok; Kaufman, Randal J (2014) Measurement of the unfolded protein response to investigate its role in adipogenesis and obesity. Methods Enzymol 538:135-50
Groenendyk, Jody; Peng, Zhenling; Dudek, Elzbieta et al. (2014) Interplay between the oxidoreductase PDIA6 and microRNA-322 controls the response to disrupted endoplasmic reticulum calcium homeostasis. Sci Signal 7:ra54
Wang, Shiyu; Kaufman, Randal J (2014) How does protein misfolding in the endoplasmic reticulum affect lipid metabolism in the liver? Curr Opin Lipidol 25:125-32
Ji, Y; Fish, P M; Strawn, T L et al. (2014) C-reactive protein induces expression of tissue factor and plasminogen activator inhibitor-1 and promotes fibrin accumulation in vein grafts. J Thromb Haemost 12:1667-77
Cao, Stewart S; Wang, Miao; Harrington, Jane C et al. (2014) Phosphorylation of eIF2? is dispensable for differentiation but required at a posttranscriptional level for paneth cell function and intestinal homeostasis in mice. Inflamm Bowel Dis 20:712-22
Khoriaty, Rami; Vasievich, Matthew P; Jones, Morgan et al. (2014) Absence of a red blood cell phenotype in mice with hematopoietic deficiency of SEC23B. Mol Cell Biol 34:3721-34

Showing the most recent 10 out of 143 publications