Molecular characterization of liver gene transfer and its oncogenic potential A substantial advantage of AAV for genetic diseases is its ability to confer long-term and high-level transgene expression in liver. This project will evaluate several interesting aspects of molecular biology as it relates to mechanisms of persistence and potential safety considerations. The first specific aim will address the potential for recombination between the transduced vector genome and the latent wild-type AAV that occurs subsequent to a natural infection. The second specific aim will undertake a systematic evaluation of the molecular state and structure of persistent AAV genomes with a focus on the frequency and distribution of integration sites by adapting the state-of-art massive parallel genome wide pyrosequencing technology for studying AAV integration. The final specific aim will undertake experiments to actually quantitate the oncogenic potential of AAV following the delivery to liver. These studies will be performed in two murine models for dyslipidemia including LDLR/Apobec-1 double KO and LDLR/Apobec-1/MTP triple KO mice. In addition, the consequence of chronic inflammation caused by steatohepatitis on the oncogenic potential of AAV will be studied Project III will rely on Projects I and II for obtaining tissues from nonhuman primates who have received AAV vectors as part of its goal to undertake molecular characterization. This project will rely on the expertise of Dr. Rader in Project II to conduct the tumors studies in the murine models for lipidemia.

Public Health Relevance

Lay description. This project will evaluate the molecular structure of the transferred gene as is resides in the liver cells. Animal studies will be performed to determine if the vector causes tumors.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL059407-14
Application #
8378199
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
14
Fiscal Year
2012
Total Cost
$463,117
Indirect Cost
$17,888
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Amengual, Jaume; Guo, Liang; Strong, Alanna et al. (2018) Autophagy Is Required for Sortilin-Mediated Degradation of Apolipoprotein B100. Circ Res 122:568-582
Giles, April R; Sims, Joshua J; Turner, Kevin B et al. (2018) Deamidation of Amino Acids on the Surface of Adeno-Associated Virus Capsids Leads to Charge Heterogeneity and Altered Vector Function. Mol Ther 26:2848-2862
Giles, April R; Govindasamy, Lakshmanan; Somanathan, Suryanarayan et al. (2018) Mapping an Adeno-associated Virus 9-Specific Neutralizing Epitope To Develop Next-Generation Gene Delivery Vectors. J Virol 92:
Calcedo, Roberto; Somanathan, Suryanarayan; Qin, Qiuyue et al. (2017) Class I-restricted T-cell responses to a polymorphic peptide in a gene therapy clinical trial for ?-1-antitrypsin deficiency. Proc Natl Acad Sci U S A 114:1655-1659
Ai, Jianzhong; Li, Jia; Gessler, Dominic J et al. (2017) Adeno-associated virus serotype rh.10 displays strong muscle tropism following intraperitoneal delivery. Sci Rep 7:40336
Ai, Jianzhong; Tai, Phillip W L; Lu, Yi et al. (2017) Characterization of adenoviral transduction profile in prostate cancer cells and normal prostate tissue. Prostate 77:1265-1270
Greig, Jenny A; Limberis, Maria P; Bell, Peter et al. (2017) Non-Clinical Study Examining AAV8.TBG.hLDLR Vector-Associated Toxicity in Chow-Fed Wild-Type and LDLR+/- Rhesus Macaques. Hum Gene Ther Clin Dev 28:39-50
Greig, Jenny A; Limberis, Maria P; Bell, Peter et al. (2017) Nonclinical Pharmacology/Toxicology Study of AAV8.TBG.mLDLR and AAV8.TBG.hLDLR in a Mouse Model of Homozygous Familial Hypercholesterolemia. Hum Gene Ther Clin Dev 28:28-38
Ajufo, Ezim; Cuchel, Marina (2016) Recent Developments in Gene Therapy for Homozygous Familial Hypercholesterolemia. Curr Atheroscler Rep 18:22
Ibrahim, Salam; Somanathan, Suryanarayan; Billheimer, Jeffrey et al. (2016) Stable liver-specific expression of human IDOL in humanized mice raises plasma cholesterol. Cardiovasc Res 110:23-9

Showing the most recent 10 out of 149 publications