The Gene Therapy Program has access to animal facilities of importance to this P01. Dr. Wilson has managed mouse and nonhuman primate vivaria at Penn for the last 14 years. These facilities are stateof- the-art, are operated under BSL2 and are AAALAC accredited. The University Laboratory Animal Resources (ULAR) provides clinical veterinarian support to both vivaria. The nonhuman primate facility is dedicated to Dr. Wilson's use, while the mouse vivarium was developed for the use of those faculty involved in gene therapy research. Dr. Claire Hankenson, (Assistant Professor of Laboratory Animal Medicine, Dept of Pathobiology and Senior Associate Director for Regulatory Affairs and Planning, ULAR) will serve as Director of the Core. The mouse oncogenicity study will be performed in a dedicated room within the mouse facility. All nonhuman primate experiments will be implemented by the Core with biological samples being provided to the Projects and other Cores. The Core will also provide support for all mouse procedures and maintenance of all breeding colonies.

Public Health Relevance

Lay description. A critical step in the pre-clinical development of gene therapy is the evaluation of the safety and efficacy of gene transfer in monkeys. This Core will perform these studies on behalf of the projects.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL059407-15
Application #
8502521
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
15
Fiscal Year
2013
Total Cost
$184,836
Indirect Cost
$71,429
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Liu, Lijun; Nam, Minwoo; Fan, Wei et al. (2014) Nutrient sensing by the mitochondrial transcription machinery dictates oxidative phosphorylation. J Clin Invest 124:768-84
Mikals, Kyle; Nam, Hyun-Joo; Van Vliet, Kim et al. (2014) The structure of AAVrh32.33, a novel gene delivery vector. J Struct Biol 186:308-17
Wang, Dan; Zhong, Li; Nahid, M Abu et al. (2014) The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opin Drug Deliv 11:345-64
Wang, Dan; Gao, Guangping (2014) State-of-the-art human gene therapy: part I. Gene delivery technologies. Discov Med 18:67-77
Wang, Dan; Gao, Guangping (2014) State-of-the-art human gene therapy: part II. Gene therapy strategies and clinical applications. Discov Med 18:151-61
Lock, Martin; Alvira, Mauricio R; Chen, Shu-Jen et al. (2014) Absolute determination of single-stranded and self-complementary adeno-associated viral vector genome titers by droplet digital PCR. Hum Gene Ther Methods 25:115-25
Gao, Kai; Li, Mengxin; Zhong, Li et al. (2014) Empty Virions In AAV8 Vector Preparations Reduce Transduction Efficiency And May Cause Total Viral Particle Dose-Limiting Side-Effects. Mol Ther Methods Clin Dev 1:20139
Somanathan, Suryanarayan; Jacobs, Frank; Wang, Qiang et al. (2014) AAV vectors expressing LDLR gain-of-function variants demonstrate increased efficacy in mouse models of familial hypercholesterolemia. Circ Res 115:591-9
Kassim, Sadik H; Li, Hui; Bell, Peter et al. (2013) Adeno-associated virus serotype 8 gene therapy leads to significant lowering of plasma cholesterol levels in humanized mouse models of homozygous and heterozygous familial hypercholesterolemia. Hum Gene Ther 24:19-26
Gruntman, Alisha M; Bish, Lawrence T; Mueller, Christian et al. (2013) Gene transfer in skeletal and cardiac muscle using recombinant adeno-associated virus. Curr Protoc Microbiol Chapter 14:Unit 14D.3

Showing the most recent 10 out of 126 publications