The overall goals of Core D are to provide (i) fiuorescence, confocal, and electron microscopy support, (ii) image analysis, and (iii) physiological support for lung perfusion experiments proposed in all projects. Centralization of the imaging and physiological support within a single core refiects the emphasis that P.l.s have placed on imaging and physiological studies in lung models. Core D is essential in order to fulfill the objectives of all projects. In addition to the research support. Core D personnel will also provide training for project participants in these methodologies. Core D will provide expertise, resources, and equipment for performing lung studies in the knockout mouse models and other mouse models in which proteins of interest are expressed through gene delivery via liposomes. Core D will provide expertise for the transfection of cDNAs in mouse lung microvessels using cationic liposomes. The physiological support component will provide standardized methods for quantification of lung vascular permeability in normal and genetically modified mice. This will include measurement of pulmonary capillary filtration coefficient and vessel wall albumin permeability surface-area product. The methods to be used have been developed specifically for the mouse lung. In addition, lung vascular albumin permeability and the routes of albumin transport will be assessed by electron microscopy and morphometric analysis using described methods. In terms of the imaging component. Core D will provide resources and expertise for (i) live cell and fixed specimen fluorescence, confocal, FRET (fluorescence resonance energy transfer), and TIRF (total internal reflective fluorescence) microscopy and (ii) transmission electron microscopy. Also, Core D will provide assessment of expression of transfected and liposome-delivered proteins by fluorescence and confocal microscopy of endothelial monolayers and whole mount lung sections as described.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL060678-14
Application #
8620697
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
14
Fiscal Year
2014
Total Cost
$442,739
Indirect Cost
$160,740
Name
University of Illinois at Chicago
Department
Type
DUNS #
098987217
City
Chicago
State
IL
Country
United States
Zip Code
60612
Jiang, Chunling; Liu, Zheng; Hu, Rong et al. (2017) Inactivation of Rab11a GTPase in Macrophages Facilitates Phagocytosis of Apoptotic Neutrophils. J Immunol 198:1660-1672
Mittal, Manish; Nepal, Saroj; Tsukasaki, Yoshikazu et al. (2017) Response by Mittal et al to Letter Regarding Article, ""Neutrophil Activation of Endothelial Cell-Expressed TRPM2 Mediates Transendothelial Neutrophil Migration and Vascular Injury"". Circ Res 121:e87
Oliveira, Suellen D S; Castellon, Maricela; Chen, Jiwang et al. (2017) Inflammation-induced caveolin-1 and BMPRII depletion promotes endothelial dysfunction and TGF-?-driven pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol 312:L760-L771
Potje, Simone R; Chen, Zhenlong; Oliveira, Suellen D'Arc S et al. (2017) Nitric oxide donor [Ru(terpy)(bdq)NO]3+ induces uncoupling and phosphorylation of endothelial nitric oxide synthase promoting oxidant production. Free Radic Biol Med 112:587-596
Gong, Haixia; Liu, Menglin; Klomp, Jeff et al. (2017) Method for Dual Viral Vector Mediated CRISPR-Cas9 Gene Disruption in Primary Human Endothelial Cells. Sci Rep 7:42127
Gu, Wei; Yao, Lun; Li, Lexing et al. (2017) ICAM-1 regulates macrophage polarization by suppressing MCP-1 expression via miR-124 upregulation. Oncotarget 8:111882-111901
Tsang, Kit Man; Hyun, James S; Cheng, Kwong Tai et al. (2017) Embryonic Stem Cell Differentiation to Functional Arterial Endothelial Cells through Sequential Activation of ETV2 and NOTCH1 Signaling by HIF1?. Stem Cell Reports 9:796-806
Park, Thomas J; Reznick, Jane; Peterson, Bethany L et al. (2017) Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science 356:307-311
Yazbeck, Pascal; Tauseef, Mohammad; Kruse, Kevin et al. (2017) STIM1 Phosphorylation at Y361 Recruits Orai1 to STIM1 Puncta and Induces Ca2+ Entry. Sci Rep 7:42758
Marsboom, Glenn; Chen, Zhenlong; Yuan, Yang et al. (2017) Aberrant caveolin-1-mediated Smad signaling and proliferation identified by analysis of adenine 474 deletion mutation (c.474delA) in patient fibroblasts: a new perspective on the mechanism of pulmonary hypertension. Mol Biol Cell 28:1177-1185

Showing the most recent 10 out of 195 publications