Myocardial infarction and its consequences are a leading cause of morbidity and mortality. Earlier studies by us have uncovered key roles for RAGE in myocardial infarction, as global deletion RAGE resulted in decreased myocardial necrosis, increased functional recovery and preservation of ATP compared to wildtype littermates 48 hours after ischemia/reperfusion (l/R). Our studies have uncovered that RAGE contributes to oxidative stress consequent to l/R and influences mitochondrial dysfunction that accompanies injury to the heart. A thorough approach to understanding the basic mechanisms underlying the effects of global RAGE deletion requires cell-specific dissection of the precipitating pathways of injury. Novel findings from our group during the past year enhance the direction of the proposed studies in this application: the RAGE cytoplasmic domain interacts with diaphanous-1 (mDia-1), a member of the formin homology domain protein family and an effector of Rho GTPases. mDial is essential for RAGE ligand-mediated cellular migration and activation of cdc42/rac-1. In this project, we will probe the signaling mechanisms in cardiomyocyte stresses evoked by l/R in the heart using murine models, both in the absence and presence of diabetes. We hypothesize that cardiomyocyte RAGE and mDial, highly upregulated in the murine heart after l/R, signals devastating metabolic consequences in the myocardium, which trigger mitochondrial dysfunction, in part through GSK-3n, ROCK and apoptotic events. These concepts will be explored in depth using novel RAGE and mDial floxed mice in murine models of l/R in the heart. Project 3 is integrally linked within the Program and will study cell-specific RAGE and mDia-1 signaling in myocardial infarction. Project 3 shares findings from Affymetrix gene array studies with Projects 1&2 to create integrated pathways by which RAGE signaling regulates cardiovascular stress. Project 3 uses all three Cores of the Program during all five years.

Public Health Relevance

In subjects with diabetes, the incidence and severity of myocardial infarction and heart failure is increased. This application focuses on the Receptor for Advanced Glycation Endproducts (RAGE) and its biology in myocardial and the remodeling response. Only by a full understanding of RAGE's role in this setting will novel cardioprotective strategies in myocardial infarction be identified.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-PPG-A)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
New York University
New York
United States
Zip Code
López-Díez, Raquel; Shekhtman, Alexander; Ramasamy, Ravichandran et al. (2016) Cellular mechanisms and consequences of glycation in atherosclerosis and obesity. Biochim Biophys Acta 1862:2244-2252
Ramasamy, Ravichandran; Shekhtman, Alexander; Schmidt, Ann Marie (2016) The multiple faces of RAGE--opportunities for therapeutic intervention in aging and chronic disease. Expert Opin Ther Targets 20:431-46
Thiagarajan, Devi; Vedantham, Srinivasan; Ananthakrishnan, Radha et al. (2016) Mechanisms of transcription factor acetylation and consequences in hearts. Biochim Biophys Acta 1862:2221-2231
Manigrasso, Michaele B; Pan, Jinhong; Rai, Vivek et al. (2016) Small Molecule Inhibition of Ligand-Stimulated RAGE-DIAPH1 Signal Transduction. Sci Rep 6:22450
Thiagarajan, Devi; Ananthakrishnan, Radha; Zhang, Jinghua et al. (2016) Aldose Reductase Acts as a Selective Derepressor of PPARγ and the Retinoic Acid Receptor. Cell Rep 15:181-96
Schmidt, Ann Marie (2015) Soluble RAGEs - Prospects for treating & tracking metabolic and inflammatory disease. Vascul Pharmacol 72:1-8
Zirpoli, Hylde; Abdillahi, Mariane; Quadri, Nosirudeen et al. (2015) Acute administration of n-3 rich triglyceride emulsions provides cardioprotection in murine models after ischemia-reperfusion. PLoS One 10:e0116274
Gao, Minghui; Monian, Prashant; Quadri, Nosirudeen et al. (2015) Glutaminolysis and Transferrin Regulate Ferroptosis. Mol Cell 59:298-308
Schmidt, Ann Marie (2015) The growing problem of obesity: mechanisms, consequences, and therapeutic approaches. Arterioscler Thromb Vasc Biol 35:e19-23
Grossin, Nicolas; Auger, Florent; Niquet-Leridon, Céline et al. (2015) Dietary CML-enriched protein induces functional arterial aging in a RAGE-dependent manner in mice. Mol Nutr Food Res 59:927-38

Showing the most recent 10 out of 71 publications