Core B, the Biochemistry, Pathology and Imaging Core will continue to serve all three Projects through all five years of the Program. The core is composed of three units: (1) The Biochemistry Unit of Core B will perform assays on tissue/plasma of mice and cultured cells in the individual projects for assessment of oxidative stress, AGEs and other biochemical mediators linked to RAGE and vascular dysfunction. (2) The Pathology Unit of Core B will perform pathological analysis of mouse tissues. This Unit will serve all 3 projects for standardization of immunohistochemistry and semiquantitative analyses. The Unit will perform analysis of atherosclerosis (aortas (atherosclerosis at the aortic root and en face assessment of aorta), angiogenesis (Project 2-3) and myocardial infarction size (Project 3). (3) The newly-formed Imaging Unit will perform novel imaging techniques using state-of-the-art new equipment for molecular imaging studies in atherosclerosis and apoptosis (Project 1) and angiogenesis (Project 2).

Public Health Relevance

Atherosclerosis, peripheral arterial disease and myocardial infarction and its consequences are highly prevalent diseases. In subjects with diabetes, the incidence and severity of these disorders is increased. This application focuses on the Receptor for Advanced Glycation Endproducts (RAGE) and its biology in accelerated cardiovascular disease, particularly in diabetes.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL060901-12
Application #
8378285
Study Section
Special Emphasis Panel (ZHL1-PPG-A)
Project Start
Project End
2017-11-30
Budget Start
2012-12-01
Budget End
2013-11-30
Support Year
12
Fiscal Year
2013
Total Cost
$227,656
Indirect Cost
$74,494
Name
New York University
Department
Type
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
López-Díez, Raquel; Shekhtman, Alexander; Ramasamy, Ravichandran et al. (2016) Cellular mechanisms and consequences of glycation in atherosclerosis and obesity. Biochim Biophys Acta 1862:2244-2252
Ramasamy, Ravichandran; Shekhtman, Alexander; Schmidt, Ann Marie (2016) The multiple faces of RAGE--opportunities for therapeutic intervention in aging and chronic disease. Expert Opin Ther Targets 20:431-46
Thiagarajan, Devi; Vedantham, Srinivasan; Ananthakrishnan, Radha et al. (2016) Mechanisms of transcription factor acetylation and consequences in hearts. Biochim Biophys Acta 1862:2221-2231
Manigrasso, Michaele B; Pan, Jinhong; Rai, Vivek et al. (2016) Small Molecule Inhibition of Ligand-Stimulated RAGE-DIAPH1 Signal Transduction. Sci Rep 6:22450
Thiagarajan, Devi; Ananthakrishnan, Radha; Zhang, Jinghua et al. (2016) Aldose Reductase Acts as a Selective Derepressor of PPARγ and the Retinoic Acid Receptor. Cell Rep 15:181-96
Schmidt, Ann Marie (2015) Soluble RAGEs - Prospects for treating & tracking metabolic and inflammatory disease. Vascul Pharmacol 72:1-8
Zirpoli, Hylde; Abdillahi, Mariane; Quadri, Nosirudeen et al. (2015) Acute administration of n-3 rich triglyceride emulsions provides cardioprotection in murine models after ischemia-reperfusion. PLoS One 10:e0116274
Gao, Minghui; Monian, Prashant; Quadri, Nosirudeen et al. (2015) Glutaminolysis and Transferrin Regulate Ferroptosis. Mol Cell 59:298-308
Schmidt, Ann Marie (2015) The growing problem of obesity: mechanisms, consequences, and therapeutic approaches. Arterioscler Thromb Vasc Biol 35:e19-23
Grossin, Nicolas; Auger, Florent; Niquet-Leridon, Céline et al. (2015) Dietary CML-enriched protein induces functional arterial aging in a RAGE-dependent manner in mice. Mol Nutr Food Res 59:927-38

Showing the most recent 10 out of 71 publications