The Bioassay Core (Core C) will provide services to all three projects in this program project grant (PPG) and will be directed by Dr. Kathryn Sandberg. The overall goal of this core is to provide analytical support for each project of the PPG by aiding in gene silencing and gene expression through si_RNA and lentiviral strategies and to ensure quality control of employed strategies by genotyping knockout and transgenic (tg) animals and by measuring mRNA and protein expression of targeted genes of interest. Genotyping will be performed on single-gene deleted mice and at least two strains of transgenic mice bred in Core B including: gene deletions of extracellular superoxide dismutase (SOD-3);NADPH oxidase-4 (NOX-4);p47'"^?'', a critical subunit of NADPH oxidase-2 (p47'"'?'');ADP ribosyl cyclase 38 (CD38);fibroblast growth factor binding protein-1 (FGF-BP1) and -3 (FGF-BP3);dopamine-2 receptor (D2R);paraoxonase-2 (PON-2); overexpr-ession in vascular smooth muscle cells of p22''^?'*, a membrane subunit of NOX (VSMCP^^"'^"''tg) and catalase (VSMC^^'tg). This core will also determine levels of oxidative stress by measuring nitrates and nitrites, superoxide and the redox status of thiols by enzyme assays and capillary electrophoresis. Furthermore, this core is poised to develop new methods for gene manipulation for each project as gene manipulation technologies advance in the field.
Aim 1 will construct and develop gene silencing techniques including siRNA and lentiviral approaches to study the role of genes of interest both in vivo and in cell culture.
Aim 2 will assess gene expression at the DNA, mRNA and/or protein levels to ensure quality control of animal breeding performed in Core B and the efficacy of gene manipulation strategies in each of the three projects including via gene knockout, siRNA and shRNA-lentiviral approaches.
Aim 3 will determine the degree of oxidative stress by measuring nitrates, nitrites, reactive oxygen species (ROS) and the redox status of thiols in each of the three projects.

Public Health Relevance

Hypertension is a global health concern. Fifty million Americans have hypertension that requires treatment and over 1 billion people woridwide have hypertension. In fact, suboptimal blood pressure is the number one risk factor for death throughout the worid. Though much research has been conducted on hypertension, the mechanisms underiying the main cause of hypertension, i.e., essential hypertension, remain unknown. This Core serves a crucial resource for this program project that is devoted to understanding the role of oxidative stress in hypertension.

Agency
National Institute of Health (NIH)
Type
Research Program Projects (P01)
Project #
5P01HL068686-12
Application #
8611958
Study Section
Special Emphasis Panel (ZHL1)
Project Start
Project End
Budget Start
Budget End
Support Year
12
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Georgetown University
Department
Type
DUNS #
City
Washington
State
DC
Country
United States
Zip Code
20057
Pei, Lei; Solis, Glenn; Nguyen, Mien T X et al. (2016) Paracellular epithelial sodium transport maximizes energy efficiency in the kidney. J Clin Invest 126:2509-18
Wang, Zheng; Zeng, Chunyu; Villar, Van Anthony M et al. (2016) Human GRK4γ142V Variant Promotes Angiotensin II Type I Receptor-Mediated Hypertension via Renal Histone Deacetylase Type 1 Inhibition. Hypertension 67:325-34
Jose, Pedro A; Yang, Zhiwei; Zeng, Chunyu et al. (2016) The importance of the gastrorenal axis in the control of body sodium homeostasis. Exp Physiol 101:465-70
Sanada, H; Yoneda, M; Yatabe, J et al. (2016) Common variants of the G protein-coupled receptor type 4 are associated with human essential hypertension and predict the blood pressure response to angiotensin receptor blockade. Pharmacogenomics J 16:3-9
Zhang, Gensheng; Wang, Qiaoling; Zhou, Qin et al. (2016) Protective Effect of Tempol on Acute Kidney Injury Through PI3K/Akt/Nrf2 Signaling Pathway. Kidney Blood Press Res 41:129-38
Jose, Pedro A; Felder, Robin A; Yang, Zhiwei et al. (2016) Gastrorenal Axis. Hypertension 67:1056-63
Li, Lingli; Lai, En Yin; Wellstein, Anton et al. (2016) Differential effects of superoxide and hydrogen peroxide on myogenic signaling, membrane potential, and contractions of mouse renal afferent arterioles. Am J Physiol Renal Physiol 310:F1197-205
Zhang, Yanrong; Jiang, Xiaoliang; Qin, Chuan et al. (2016) Dopamine D2 receptors' effects on renal inflammation are mediated by regulation of PP2A function. Am J Physiol Renal Physiol 310:F128-34
Konkalmatt, Prasad R; Asico, Laureano D; Zhang, Yanrong et al. (2016) Renal rescue of dopamine D2 receptor function reverses renal injury and high blood pressure. JCI Insight 1:
Wang, Renjun; Huang, Qian; Zhou, Rui et al. (2016) Sympathoexcitation in Rats With Chronic Heart Failure Depends on Homeobox D10 and MicroRNA-7b Inhibiting GABBR1 Translation in Paraventricular Nucleus. Circ Heart Fail 9:e002261

Showing the most recent 10 out of 195 publications