The number of known novel platelet receptors/ligands that regulate the platelet activation cascade is growing. Recent studies demonstrated that scavengejr receptor class B, type I (SR-BI) is expressed on human and murine platelets. Importantly, reduced levels of platelet SR-BI expression are associated with increased platelet aggregation in patients. Total SR-Bl deficiency in mice on an apoE null background results in spontaneous myocardial infarction and premature death. Our preliminary studies showed that deficiency of SR-BI in murine platelets is also associated with remarkably increased platelet activation and aggregation in response to selected physiological agonists. In addition, we recently identified specific ligands for SR-BI that are potent inhibitors of integriri allbps activation andplatelet aggregation in vitro. Mechanisms linking SR-BI and allbB33 activation areniknown. Control of platelet reactivity is regarded as critical for prevention of acute cardiovascular events, thus the elucidation of mechanisms by which SR-BI may regulate integrin activation and whether it contributes to thrombotic events in vivo is important. It has been established that SR-BI may participate in signa ing events in several cell types. Moreover, CD36, a close relative of SR-BI, is associated in platelets wit i several protein-tyrosine kinases of theSrc family, Thus, we hypothesized that SR-BI-mediated signaling in platelets controls platelet integrin allbpS activation and, therefore, platelet aggregation and thrombosis. T ie long-term goal of this proposal is to determine the role platelet SR-BI is playing in thrombosis and to eluc date the exact molecular and cellular mechanisms of its contribution.
The specific Aims are:
Aim 1. To characterize the role cif SR-BI in integrin allb(33 activation andplatelet function in vitro.
Aim II. Toidentify the molecular signaling mechanisms linking SR-BI and activation of integrin allbft3 in platelets.
Aim III. Wewillseek to obtain evidence that platelet SR-BIplays a significant role in the regulation of platelet activation and thrombosis in vivo.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cleveland Clinic Lerner
United States
Zip Code
Biswas, Sudipta; Zimman, Alejandro; Gao, Detao et al. (2017) TLR2 Plays a Key Role in Platelet Hyperreactivity and Accelerated Thrombosis Associated With Hyperlipidemia. Circ Res 121:951-962
Hirbawi, Jamila; Bialkowska, Katarzyna; Bledzka, Kamila M et al. (2017) The extreme C-terminal region of kindlin-2 is critical to its regulation of integrin activation. J Biol Chem 292:14258-14269
Ithychanda, Sujay S; Dou, Kevin; Robertson, Stephen P et al. (2017) Structural and thermodynamic basis of a frontometaphyseal dysplasia mutation in filamin A. J Biol Chem 292:8390-8400
Feng, Weiyi; Valiyaveettil, Manojkumar; Dudiki, Tejasvi et al. (2017) ?3 phosphorylation of platelet ?IIb?3 is crucial for stability of arterial thrombus and microparticle formation in vivo. Thromb J 15:22
Zhu, Liang; Yang, Jun; Bromberger, Thomas et al. (2017) Structure of Rap1b bound to talin reveals a pathway for triggering integrin activation. Nat Commun 8:1744
Wang, Yunmei; Gao, Huiyun; Shi, Can et al. (2017) Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIb?. Nat Commun 8:15559
Ding, Liang; Zhang, Lifang; Biswas, Sudipta et al. (2017) Akt3 inhibits adipogenesis and protects from diet-induced obesity via WNK1/SGK1 signaling JCI Insight 2:
Jawhara, Samir; Pluskota, Elzbieta; Cao, Wei et al. (2017) Distinct Effects of Integrins ?X?2 and ?M?2 on Leukocyte Subpopulations during Inflammation and Antimicrobial Responses. Infect Immun 85:
Sossey-Alaoui, Khalid; Pluskota, Elzbieta; Bialkowska, Katarzyna et al. (2017) Kindlin-2 Regulates the Growth of Breast Cancer Tumors by Activating CSF-1-Mediated Macrophage Infiltration. Cancer Res 77:5129-5141
Ding, Liang; Zhang, Lifang; Kim, Michael et al. (2017) Akt3 kinase suppresses pinocytosis of low-density lipoprotein by macrophages via a novel WNK/SGK1/Cdc42 protein pathway. J Biol Chem 292:9283-9293

Showing the most recent 10 out of 97 publications