This Program Project Grant addresses the metabolic mechanisms underlying the pathophysiology of heart failure (HF), and aims to identify novel metabolic approaches to prevent and treat HF. The consequences of metabolic dysfunction in HF are poorly understood, but there is strong evidence that energy metabolism can effect contractile function and progressive left ventricular remodeling. This translational research project uses sophisticated animal models of HF to evaluate novel mechanisms that link various aspects of cardiac metabolism to clinically relevant outcomes. This application will investigate fundamental questions about the pathophysiology of HF, and the effects of manipulating energy metabolism on cardiac function and HF progression. This Program Project is composed of four projects: Project 1: "Impact of Macronutrient Intake in Heart Failure". The effects of dietary fat, protein and carbohydrate composition on progression of HF will be investigated. Project 2: "Heart Rate Control, Myocardial Energetics and Progression of Heart Failure". This project will dissect the role of heart rate in abnormalities of cardiac energetics and progression of LV dilation and dysfunction in HF. Project 3: "Substrate Selection and Oxidative Stress in Heart Failure". Causal relationships will be explored between altered energy substrate metabolism and oxidative stress in HF. Project 4: "Mitochondrial Dysfunction in Heart Failure". This project investigates the molecular mechanisms for the decrease in oxidative phosphorylation found in heart and skeletal muscle mitochondria in HF. In addition, there will be four Cores (Administrative, Large Animal/Histology, Metabolism, and Mitochondria/Mass Spec).

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL074237-09
Application #
8310992
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Wong, Renee P
Project Start
2003-07-15
Project End
2012-12-31
Budget Start
2012-08-16
Budget End
2012-12-31
Support Year
9
Fiscal Year
2012
Total Cost
$2,230,762
Indirect Cost
$242,289
Name
University of Maryland Baltimore
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
188435911
City
Baltimore
State
MD
Country
United States
Zip Code
21201
Flori, Alessandra; Liserani, Matteo; Frijia, Francesca et al. (2015) Real-time cardiac metabolism assessed with hyperpolarized [1-(13) C]acetate in a large-animal model. Contrast Media Mol Imaging 10:194-202
Vimercati, Claudio; Qanud, Khaled; Mitacchione, Gianfranco et al. (2014) Beneficial effects of acute inhibition of the oxidative pentose phosphate pathway in the failing heart. Am J Physiol Heart Circ Physiol 306:H709-17
Mitacchione, Gianfranco; Powers, Jeffrey C; Grifoni, Gino et al. (2014) The gut hormone ghrelin partially reverses energy substrate metabolic alterations in the failing heart. Circ Heart Fail 7:643-51
Velez, Mauricio; Kohli, Smita; Sabbah, Hani N (2014) Animal models of insulin resistance and heart failure. Heart Fail Rev 19:1-13
Prosdocimo, Domenick A; Anand, Priti; Liao, Xudong et al. (2014) Kruppel-like factor 15 is a critical regulator of cardiac lipid metabolism. J Biol Chem 289:5914-24
Shekar, Kadambari Chandra; Li, Ling; Dabkowski, Erinne R et al. (2014) Cardiac mitochondrial proteome dynamics with heavy water reveals stable rate of mitochondrial protein synthesis in heart failure despite decline in mitochondrial oxidative capacity. J Mol Cell Cardiol 75:88-97
Clericò, Vito; Masini, Luca; Boni, Adriano et al. (2014) Water-dispersible three-dimensional LC-nanoresonators. PLoS One 9:e105474
Rosca, Mariana G; Tandler, Bernard; Hoppel, Charles L (2013) Mitochondria in cardiac hypertrophy and heart failure. J Mol Cell Cardiol 55:31-41
Hecker, Peter A; Lionetti, Vincenzo; Ribeiro Jr, Rogerio F et al. (2013) Glucose 6-phosphate dehydrogenase deficiency increases redox stress and moderately accelerates the development of heart failure. Circ Heart Fail 6:118-26
Galvao, Tatiana F; Khairallah, Ramzi J; Dabkowski, Erinne R et al. (2013) Marine n3 polyunsaturated fatty acids enhance resistance to mitochondrial permeability transition in heart failure but do not improve survival. Am J Physiol Heart Circ Physiol 304:H12-21

Showing the most recent 10 out of 139 publications