The objective of the Metabolism core is to provide the to PPG investigators the scientific and technical support for the execution of biochemical analyses of blood and myocardial tissue samples from all four Projects in the PPG. The Core will perform metabolic and isotopic tracer analysis of blood and tissue from the dogs studied in Projects 1, 2 and 3, and will oversee the experiments with doubly labeled water in mice and dogs in Project 1. The Core will also assess the expression and activity of selected proteins, measure the content of key regulatory metabolites (e.g ATP, lactate, etc), measure mRNA expression for selected genes, and plasma hormone levels. The measurement of Inflamatory cytokines for Project 1 will be performed by the Core. All of the expertise and equipment necessary for these measurements is in place.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Henry Ford Health System
United States
Zip Code
Flori, Alessandra; Liserani, Matteo; Frijia, Francesca et al. (2015) Real-time cardiac metabolism assessed with hyperpolarized [1-(13) C]acetate in a large-animal model. Contrast Media Mol Imaging 10:194-202
Vimercati, Claudio; Qanud, Khaled; Mitacchione, Gianfranco et al. (2014) Beneficial effects of acute inhibition of the oxidative pentose phosphate pathway in the failing heart. Am J Physiol Heart Circ Physiol 306:H709-17
Mitacchione, Gianfranco; Powers, Jeffrey C; Grifoni, Gino et al. (2014) The gut hormone ghrelin partially reverses energy substrate metabolic alterations in the failing heart. Circ Heart Fail 7:643-51
Velez, Mauricio; Kohli, Smita; Sabbah, Hani N (2014) Animal models of insulin resistance and heart failure. Heart Fail Rev 19:1-13
Prosdocimo, Domenick A; Anand, Priti; Liao, Xudong et al. (2014) Kruppel-like factor 15 is a critical regulator of cardiac lipid metabolism. J Biol Chem 289:5914-24
Shekar, Kadambari Chandra; Li, Ling; Dabkowski, Erinne R et al. (2014) Cardiac mitochondrial proteome dynamics with heavy water reveals stable rate of mitochondrial protein synthesis in heart failure despite decline in mitochondrial oxidative capacity. J Mol Cell Cardiol 75:88-97
Clericò, Vito; Masini, Luca; Boni, Adriano et al. (2014) Water-dispersible three-dimensional LC-nanoresonators. PLoS One 9:e105474
Rosca, Mariana G; Tandler, Bernard; Hoppel, Charles L (2013) Mitochondria in cardiac hypertrophy and heart failure. J Mol Cell Cardiol 55:31-41
Hecker, Peter A; Lionetti, Vincenzo; Ribeiro Jr, Rogerio F et al. (2013) Glucose 6-phosphate dehydrogenase deficiency increases redox stress and moderately accelerates the development of heart failure. Circ Heart Fail 6:118-26
Galvao, Tatiana F; Khairallah, Ramzi J; Dabkowski, Erinne R et al. (2013) Marine n3 polyunsaturated fatty acids enhance resistance to mitochondrial permeability transition in heart failure but do not improve survival. Am J Physiol Heart Circ Physiol 304:H12-21

Showing the most recent 10 out of 139 publications