The long-term objective is to determine the interaction among the five dopamine receptors and other G protein-coupled receptors (GPCRs) in the regulation of renal electrolyte transport and blood pressure. The D3 dopamine receptor (D3R), by itself, or via its interaction, with other dopamine receptors (e.g., DIR) and other GPCRs (e.g., angiotensin type 1 receptor), regulates renal sodium transport and blood pressure. Deletion of the D3R gene (D3R-/-) results in saltsensitive hypertension that is associated with increased renal expression of sodium/hydrogen exchanger type 3 (NHE3[SLC9A3]), sodium chloride exchanger (NCC[SLC12A3]) and alpha subunit of the epithelial sodium channel (ENaC [SCNNl A ]). Preliminary data show that the D3R ubiquitinates NHE3 and that the ubiquitination of NHE3 is due to D3R-mediated inhibition of USP48, an ubiquitinase. The overall hypothesis of project 3 is that the hypertension in D3R-/- mice is caused by increased activity and expression of NHE3 and NCC;their increased expression is caused by decreased degradation due to deubiquitination by USP48.
Specific aim 1 will test the hypothesis that impaired D3R function, because of decreased expression (D3-/-) or because of constitutive desensitization by human GRK4 gamma variants (e.g., GRK4 gammpl42V), results in increased renal expression of NHE3 and NCC when NaCI intake is normal and increased renal expression of NCC and ENaC when NaCI intake is increased. The impaired ability of D3-/-mice to excrete sodium contributes to the development of hypertension.
Specific aim 2 will test the hypothesis that D3R inhibits USP4S activity, preventing the deubiquitination of NHE3 and NCC;this preserves their ubiquitination, resulting in increased degradation and therefore, decreased expression. Decreased expression of D3R, or impairment of D3R function by human GRK4gamma 142V, increases USP48 expression and activity, promotes the deubiquitination and prevents the degradation of NHE3 and NCC, thus, increasing their expression levels. Hypertension is a complex polygenic disease. However, based on our findings, GRK4 regulation of a limited number of GPCRs, and the downstream regulation of genes/proteins by GPCRs, e.g., D3R, makes a single gene, GRK4, a key contributor in the pathogenesis of essential hypertension.

Public Health Relevance

These studies will shed light on the genetic causes of human essential hypertension. Understanding the mechanisms by which hypertension develops when the function of a dopamine receptor Is impaired can lead to the development of strategies to prevent and treat hypertension.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL074940-10
Application #
8625324
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
10
Fiscal Year
2014
Total Cost
$387,058
Indirect Cost
$77,568
Name
University of Virginia
Department
Type
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Armando, Ines; Konkalmatt, Prasad; Felder, Robin A et al. (2015) The renal dopaminergic system: novel diagnostic and therapeutic approaches in hypertension and kidney disease. Transl Res 165:505-11
Lee, Hewang; Abe, Yoshifusa; Lee, Icksoo et al. (2014) Increased mitochondrial activity in renal proximal tubule cells from young spontaneously hypertensive rats. Kidney Int 85:561-9
Gildea, John J; Shah, Ishan T; Van Sciver, Robert E et al. (2014) The cooperative roles of the dopamine receptors, D1R and D5R, on the regulation of renal sodium transport. Kidney Int 86:118-26
Yu, Peiying; Sun, Min; Villar, Van Anthony M et al. (2014) Differential dopamine receptor subtype regulation of adenylyl cyclases in lipid rafts in human embryonic kidney and renal proximal tubule cells. Cell Signal 26:2521-9
Chen, Ken; Fu, Chunjiang; Chen, Caiyu et al. (2014) Role of GRK4 in the regulation of arterial AT1 receptor in hypertension. Hypertension 63:289-96
Gildea, John J; Seaton, Joscelyn E; Victor, Ken G et al. (2014) Exosomal transfer from human renal proximal tubule cells to distal tubule and collecting duct cells. Clin Biochem 47:89-94
Yang, Yu; Cuevas, Santiago; Yang, Sufei et al. (2014) Sestrin2 decreases renal oxidative stress, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of reactive oxygen species production. Hypertension 64:825-32
Jiang, Xiaoliang; Konkalmatt, Prasad; Yang, Yu et al. (2014) Single-nucleotide polymorphisms of the dopamine D2 receptor increase inflammation and fibrosis in human renal proximal tubule cells. Hypertension 63:e74-80
Yu, Peiying; Han, Weixing; Villar, Van Anthony M et al. (2014) Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells. Redox Biol 2:570-9
Armando, Ines; Villar, Van Anthony M; Jones, John E et al. (2014) Dopamine D3 receptor inhibits the ubiquitin-specific peptidase 48 to promote NHE3 degradation. FASEB J 28:1422-34

Showing the most recent 10 out of 88 publications