of Core Unit: C.1. Rationale and Objectives Each of the three laboratories involved in the Program Project will express distinct classes of proteins from serum proteins (ApoA1) and enzymes (PON1, LCAT, and MPO) to cytoplasmic ribosomal structural proteins (like L13a), enzymes (eNOS, nNOS, and Akt) and mutant forms of a subset of these in order to perform subsequent enzymatic assays as described in the Projects and analysis utilizing diverse and sophisticated instrumentation detailed in the Biophysical and Computational Chemistry Core (Core C). The principal objective of the Protein Engineering and Expression Core is to provide a centralized means for high volume protein expression thereby facilitating the relatively sophisticated and diverse biophysical studies on the proteins of interest for each Project The Core will also function as an educational facility for training members of the Program Project laboratories on ways to optimize protein expression using various strategies and also in the generation of mutants of specific alleles desired for protein expression. Training in the purification of proteins will also be provided by the Core. Centralizing these aspects of the work and training is expected to greatly enhance efficiency and productivity of the scientists participating in each project.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL076491-08
Application #
8374821
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2012-02-01
Budget End
2013-01-31
Support Year
8
Fiscal Year
2012
Total Cost
$261,772
Indirect Cost
$89,843
Name
Cleveland Clinic Lerner
Department
Type
DUNS #
135781701
City
Cleveland
State
OH
Country
United States
Zip Code
44195
Wang, Zeneng; DiDonato, Joseph A; Buffa, Jennifer et al. (2016) Eosinophil Peroxidase Catalyzed Protein Carbamylation Participates in Asthma. J Biol Chem 291:22118-22135
Zhu, Weifei; Gregory, Jill C; Org, Elin et al. (2016) Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 165:111-24
Grodin, Justin L; Verbrugge, Frederik H; Ellis, Stephen G et al. (2016) Importance of Abnormal Chloride Homeostasis in Stable Chronic Heart Failure. Circ Heart Fail 9:e002453
Hartiala, Jaana A; Tang, W H Wilson; Wang, Zeneng et al. (2016) Genome-wide association study and targeted metabolomics identifies sex-specific association of CPS1 with coronary artery disease. Nat Commun 7:10558
Gu, Xiaodong; Wu, Zhiping; Huang, Ying et al. (2016) A Systematic Investigation of Structure/Function Requirements for the Apolipoprotein A-I/Lecithin Cholesterol Acyltransferase Interaction Loop of High-density Lipoprotein. J Biol Chem 291:6386-95
Senthong, Vichai; Wu, Yuping; Hazen, Stanley L et al. (2016) Predicting long-term prognosis in stable peripheral artery disease with baseline functional capacity estimated by the Duke Activity Status Index. Am Heart J 184:17-25
Hammadah, Muhammad; Brennan, Marie-Luise; Wu, Yuping et al. (2016) Usefulness of Relative Hypochromia in Risk Stratification for Nonanemic Patients With Chronic Heart Failure. Am J Cardiol 117:1299-304
Senthong, Vichai; Li, Xinmin S; Hudec, Timothy et al. (2016) Plasma Trimethylamine N-Oxide, a Gut Microbe-Generated Phosphatidylcholine Metabolite, Is Associated With Atherosclerotic Burden. J Am Coll Cardiol 67:2620-8
Loley, Christina; Alver, Maris; Assimes, Themistocles L et al. (2016) No Association of Coronary Artery Disease with X-Chromosomal Variants in Comprehensive International Meta-Analysis. Sci Rep 6:35278
Paz Y Mar, Hugo L; Hazen, Stanley L; Tracy, Russell P et al. (2016) Effect of Continuous Positive Airway Pressure on Cardiovascular Biomarkers: The Sleep Apnea Stress Randomized Controlled Trial. Chest 150:80-90

Showing the most recent 10 out of 241 publications