The purpose of Computational Chemistry sub-Core is to provide computational/modeling support for the investigators within the Program Projects. Computational chemistry and molecular modeling techniques will be used to gain structural/functional insight into specific molecular interactions present in the biomolecular complexes studied within different projects of the PPG. This sub-Core will integrate experimental data produced by Projects and other Cores in the Program with theoretical methods in order to produce structural information needed to elucidate the nature of interactions in these biosystems and the relationship between their structure and function. For example, the sub-Core will provide atomistic models for biomolecular complexes like protein L13A-RNA complex, eNOS complex with HSP-90 and caveolin, and HDL-PON1-MPO complex, which are investigated in Projects 3, 2 and 1, respectively, using molecular visualization/building programs (Pymol, SwissPDBViewer, Autodock4 and Modeller), and hydrogen-deuterium exchange and small angle neutron and X-ray scattering calculations. The interaction interface between different components of the complexes will be constructed using docking (Autodock4). The docking experiments will identify specific interactions between amino acid residues for protein-protein complexes, or between RNA nucleotides with amino acid residues for RNA-protein complexes, or between amino acid residues and lipids for lipoproteins. All solvated systems will be subjected to molecular dynamics simulations. The trajectory resulted from the simulation will be analyzed to determine the change in the conformation during simulation, the change in the pattern of H-bonds and salt-bridges, the change in the secondary structure and so forth. To investigate conformational changes that occur on a microsecond scale and are important for the functionality of the biomolecular system, coarse-grained simulations will be performed in which atoms are grouped together in beads and a bead-to-bead simplified force field is used. The theoretical understanding resulted from the computational/modeling investigation will be further used by the Projects to design new experiments.

Public Health Relevance

This sub-Core will provide modeling support in defining the detailed atomistic structures in solution for different protein-protein, protein-RNA and protein-lipid complexes investigated in Projects 1, 2 and 3. The sub-Core personnel will interact with other researchers working in the Projects in order to facilitate the design of new experiments suggested by theoretical insigths obained from the computational analyses.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Cleveland Clinic Lerner
United States
Zip Code
Tang, W H Wilson; Wang, Zeneng; Shrestha, Kevin et al. (2015) Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail 21:91-6
Grodin, Justin L; Hammadah, Muhammad; Fan, Yiying et al. (2015) Prognostic value of estimating functional capacity with the use of the duke activity status index in stable patients with chronic heart failure. J Card Fail 21:44-50
Grodin, Justin L; Neale, Sarah; Wu, Yuping et al. (2015) Prognostic comparison of different sensitivity cardiac troponin assays in stable heart failure. Am J Med 128:276-82
Christian, Abigail J; Lin, Hongqiao; Alferiev, Ivan S et al. (2014) The susceptibility of bioprosthetic heart valve leaflets to oxidation. Biomaterials 35:2097-102
Shao, Zhili; Zhang, Renliang; Shrestha, Kevin et al. (2014) Usefulness of elevated urine neopterin levels in assessing cardiac dysfunction and exercise ventilation inefficiency in patients with chronic systolic heart failure. Am J Cardiol 113:1839-43
Brown, J Mark; Hazen, Stanley L (2014) Metaorganismal nutrient metabolism as a basis of cardiovascular disease. Curr Opin Lipidol 25:48-53
Ghosh, Arnab; Stasch, Johannes-Peter; Papapetropoulos, Andreas et al. (2014) Nitric oxide and heat shock protein 90 activate soluble guanylate cyclase by driving rapid change in its subunit interactions and heme content. J Biol Chem 289:15259-71
Brown, J Mark; Hazen, Stanley L (2014) Seeking a unique lipid signature predicting cardiovascular disease risk. Circulation 129:1799-803
Ray, Partho Sarothi; Fox, Paul L (2014) Origin and evolution of glutamyl-prolyl tRNA synthetase WHEP domains reveal evolutionary relationships within Holozoa. PLoS One 9:e98493
Hammadah, Muhammad; Fan, Yiying; Wu, Yuping et al. (2014) Prognostic value of elevated serum ceruloplasmin levels in patients with heart failure. J Card Fail 20:946-52

Showing the most recent 10 out of 177 publications