A.1. General Goals of the Core The primary purpose of Core C, the genomic and proteomic core (previously Core C) will be to continue providing the principle investigators with cutting edge discovery genomics and proteomics tools to assess and characterize a number of canine and murine pacing models as well as human heart biopsy samples. In essence. Core C will provide crucial experimental services that are integral to the success of each project. It is a centralized facility for the analysis, compilation and correlation of quantitative levels of mRNA, microRNA and a number of key subproteomes and proteins. The proteomics group will also provide detailed analysis of a large number of post-translational modifications (PTM), validation of genomic data using multiple reaction monitoring (MRM), new mass spectrometry (MS) -based quantitative methods along with other MS techniques. In addition, the core has an integrated cellular modeling component that will perform computational modeling to refine and further develop a working cellular model of DHF and CRT.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Program Project Review Committee (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
United States
Zip Code
Hall, Gentzon; Rowell, Janelle; Farinelli, Federica et al. (2014) Phosphodiesterase 5 inhibition ameliorates angiontensin II-induced podocyte dysmotility via the protein kinase G-mediated downregulation of TRPC6 activity. Am J Physiol Renal Physiol 306:F1442-50
Rainer, Peter P; Hao, Scarlett; Vanhoutte, Davy et al. (2014) Cardiomyocyte-specific transforming growth factor ? suppression blocks neutrophil infiltration, augments multiple cytoprotective cascades, and reduces early mortality after myocardial infarction. Circ Res 114:1246-57
Del Monte, Federica; Agnetti, Giulio (2014) Protein post-translational modifications and misfolding: new concepts in heart failure. Proteomics Clin Appl 8:534-42
Kooij, Viola; Venkatraman, Vidya; Kirk, Jonathan A et al. (2014) Identification of cardiac myofilament protein isoforms using multiple mass spectrometry based approaches. Proteomics Clin Appl 8:578-89
Sharma, Kavita; Kass, David A (2014) Heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies. Circ Res 115:79-96
Kooij, Viola; Venkatraman, Vidya; Tra, John et al. (2014) Sizing up models of heart failure: Proteomics from flies to humans. Proteomics Clin Appl 8:653-64
Chow, Grant V; Silverman, Michael G; Tunin, Richard S et al. (2014) Efficacy of cardiac resynchronization in acutely infarcted canine hearts with electromechanical dyssynchrony. Heart Rhythm 11:1819-26
Agnetti, Giulio; Halperin, Victoria L; Kirk, Jonathan A et al. (2014) Desmin modifications associate with amyloid-like oligomers deposition in heart failure. Cardiovasc Res 102:24-34
Lichter, Justin G; Carruth, Eric; Mitchell, Chelsea et al. (2014) Remodeling of the sarcomeric cytoskeleton in cardiac ventricular myocytes during heart failure and after cardiac resynchronization therapy. J Mol Cell Cardiol 72:186-95
Kirk, Jonathan A; Holewinski, Ronald J; Kooij, Viola et al. (2014) Cardiac resynchronization sensitizes the sarcomere to calcium by reactivating GSK-3*. J Clin Invest 124:129-38

Showing the most recent 10 out of 99 publications