The Stem Cell and Pathology Core will be a critical resource to this PPG. It will provide the four Projects with access to a wide array of reagents, procedures, and analyses, including i) CPC isolation, sorting, and characterization, ii) assays of CPC function in vitro, and iii) histopathology of cardiac samples obtained in vivo. It will provide the facilities and expertise necessary to isolate, maintain, and manipulate CPCs from several genetically engineered mice. The individual Projects do not have the facilities or expertise needed to isolate and characterize CPCs consistently or to perform the extensive histopathological analyses required. Consolidation of all CPC work into a Core facilitv will decrease the costs of supplies and eguipment because the Core will make bulk purchases of supplies (thereby reducing expenses) and because waste and unnecessary duplication of supplies, reagents, and equipment will be eliminated with the maintenance of centralized stocks and inventories. Consolidating CPC work into a Core facilitv is also time-effective because the techniques involved in this work are very labor intensive and require dedicated, skilled personnel. The Core staff, a full-time team of six dedicated individuals under the immediate supervision of the Core Leaders, will provide consistency and reproducibility of analvsis. This is crucial, because it will ensure that all four Proiects will use CPCs isolated, expanded, and sorted the same way, thereby making the results comparable. A single source of CPCs with rigorous standardization to ensure consistency will result in transplantation of uniform CPC populations in all four Proiects and thus is extremely important for the integration and comparison of results from each of the Projects. Similarly, the uniform histopathologic analyses conducted by the Core in a blinded and rigorously standardized fashion will make it possible to compare results of different experiments within the same Project and among different Projects. The methods used by the Core to prepare CPCs are extremely efficient;CPCs in culture, as determined by c-kit expression (FACS). average 95?3% at passages 2 to 10 and remain at -95% at passage 10. In summary, the Core will ensure guality control and, by eliminating duplication of effort and maximizing the use of personnel and supplies, will enable an efficient use of resources.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL078825-08
Application #
8492148
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
8
Fiscal Year
2013
Total Cost
$501,246
Indirect Cost
$141,646
Name
University of Louisville
Department
Type
DUNS #
057588857
City
Louisville
State
KY
Country
United States
Zip Code
40292
Khan, Abdur Rahman; Farid, Talha A; Pathan, Asif et al. (2016) Impact of Cell Therapy on Myocardial Perfusion and Cardiovascular Outcomes in Patients With Angina Refractory to Medical Therapy: A Systematic Review and Meta-Analysis. Circ Res 118:984-93
Salabei, Joshua K; Lorkiewicz, Pawel K; Mehra, Parul et al. (2016) Type 2 Diabetes Dysregulates Glucose Metabolism in Cardiac Progenitor Cells. J Biol Chem 291:13634-48
Tokita, Yukichi; Tang, Xian-Liang; Li, Qianhong et al. (2016) Repeated Administrations of Cardiac Progenitor Cells Are Markedly More Effective Than a Single Administration: A New Paradigm in Cell Therapy. Circ Res 119:635-51
Moore 4th, Joseph B; Zhao, John; Keith, Matthew C L et al. (2016) The Epigenetic Regulator HDAC1 Modulates Transcription of a Core Cardiogenic Program in Human Cardiac Mesenchymal Stromal Cells Through a p53-Dependent Mechanism. Stem Cells 34:2916-2929
Hamid, Tariq; Xu, Yuanyuan; Ismahil, Mohamed Ameen et al. (2016) TNF receptor signaling inhibits cardiomyogenic differentiation of cardiac stem cells and promotes a neuroadrenergic-like fate. Am J Physiol Heart Circ Physiol 311:H1189-H1201
Tang, Xian-Liang; Li, Qianhong; Rokosh, Gregg et al. (2016) Long-Term Outcome of Administration of c-kit(POS) Cardiac Progenitor Cells After Acute Myocardial Infarction: Transplanted Cells Do not Become Cardiomyocytes, but Structural and Functional Improvement and Proliferation of Endogenous Cells Persist for at L Circ Res 118:1091-105
Conklin, Daniel J; Guo, Yiru; Jagatheesan, Ganapathy et al. (2015) Genetic Deficiency of Glutathione S-Transferase P Increases Myocardial Sensitivity to Ischemia-Reperfusion Injury. Circ Res 117:437-49
Wysoczynski, Marcin; Ratajczak, Janina; Pedziwiatr, Daniel et al. (2015) Identification of heme oxygenase 1 (HO-1) as a novel negative regulator of mobilization of hematopoietic stem/progenitor cells. Stem Cell Rev 11:110-8
Salabei, Joshua K; Hill, Bradford G (2015) Autophagic regulation of smooth muscle cell biology. Redox Biol 4:97-103
Tang, Xian-Liang; Rokosh, Gregg; Sanganalmath, Santosh K et al. (2015) Effects of Intracoronary Infusion of Escalating Doses of Cardiac Stem Cells in Rats With Acute Myocardial Infarction. Circ Heart Fail 8:757-65

Showing the most recent 10 out of 162 publications