Proteins secreted by the heart are called cardiokines. After secretion, cardiokines, such as cytokines, growth promoters and stem cell homing factors affect ischemic damage, as well as stem cell survival and engraftment. But ischemia impairs protein folding and secretion, and negatively impacts stem cell-mediated regeneration. However, we discovered a secretion process that resists this inhibition, enabling the release of certain beneficial cardiokines, just when they are needed the most. The objectives of this study are to examine the functions of, and molecular mechanisms governing this secretion process in cardiac myocytes, in vitro and in vivo, and in cardiac stem cells. We discovered this process while studying the beneficial cardiokine, mesencephalic astrocyte-derived neurotrophic factor (MANF), which resides in the endoplasmic/sarcomplasmic reticulum (ER/SR). Our hypothesis is that 1) GRP78 regulates the secretion of beneficial ER stress cardiokines from cardiac myocytes and cardiac progenitor cells by mediating the conditional retention of proteins in the ER/SR, and 2) CPCs are specially configured with a novel cytosolic form of GRP78 that enhances survival, as well as cardiokine secretion during ER stress.We will address this hypothesis by using MANF as a model cardiokine, GRP78 gain- and loss-of-function, cultured cells and mouse hearts, / AV9-mediated in vivo gene transfer, and zero-distance live cell cross linking in the following specific aims: 1- to determine the mechanism by which GRP78 regulates cardiokine secretion from cardiac myocytes, 2- to assess GRP78-regulated cardiokine secretion in the heart, in vivo, and determine the effects of disrupting this secretion on ischemic damage and regeneration, and 3- to examine the effects of GRP78 in the ER, as well as a novel, cytosolic form of GRP78 on cardiokine secretion, responses to ER stress and survival of cardiac stem cells. The results of these studies will facilitate the design of therapeutic strategies aimed at enhancing the secretion of beneficial cardiokines that minimize damage and maximize regeneration.

Public Health Relevance

Due to the irretrievable loss of functional myocardium, ischemic heart disease is a leading cause of morbidity and mortality. Since paracrine function is critical for myocyte and stem cell survival during ischemia, a better understanding of secretion in the ischemic heart, which will result from the proposed studies, is required to develop new approaches for reducing tissue loss and improving stem cell-mediated myocardial regeneration.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL085577-07
Application #
8734476
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
7
Fiscal Year
2014
Total Cost
$313,719
Indirect Cost
$103,874
Name
San Diego State University
Department
Type
DUNS #
073371346
City
San Diego
State
CA
Country
United States
Zip Code
92182
Yung, Bryan S; Brand, Cameron S; Xiang, Sunny Y et al. (2017) Selective coupling of the S1P3 receptor subtype to S1P-mediated RhoA activation and cardioprotection. J Mol Cell Cardiol 103:1-10
Shires, Sarah E; Kitsis, Richard N; Gustafsson, Åsa B (2017) Beyond Mitophagy: The Diversity and Complexity of Parkin Function. Circ Res 120:1234-1236
Monsanto, Megan M; Wang, Bingyan J; Sussman, Mark A (2017) Synthetic MSC? Nothing Beats the Real Thing. Circ Res 120:1694-1695
Khalafalla, Farid G; Greene, Steven; Khan, Hashim et al. (2017) P2Y2 Nucleotide Receptor Prompts Human Cardiac Progenitor Cell Activation by Modulating Hippo Signaling. Circ Res 121:1224-1236
Kubli, Dieter A; Sussman, Mark A (2017) Eat, breathe, ROS: controlling stem cell fate through metabolism. Expert Rev Cardiovasc Ther 15:345-356
Monsanto, Megan M; White, Kevin S; Kim, Taeyong et al. (2017) Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy. Circ Res 121:113-124
Glembotski, Christopher C (2017) Expanding the Paracrine Hypothesis of Stem Cell-Mediated Repair in the Heart: When the Unconventional Becomes Conventional. Circ Res 120:772-774
Sussman, Mark A (2017) A Matter of Opinion. Circ Res 120:36-38
Gray, Charles B B; Suetomi, Takeshi; Xiang, Sunny et al. (2017) CaMKII? subtypes differentially regulate infarct formation following ex vivo myocardial ischemia/reperfusion through NF-?B and TNF-?. J Mol Cell Cardiol 103:48-55
Giricz, Zoltán; Varga, Zoltán V; Koncsos, Gábor et al. (2017) Autophagosome formation is required for cardioprotection by chloramphenicol. Life Sci 186:11-16

Showing the most recent 10 out of 149 publications