A major goal in efforts to understand the mechanisms by which signal transduction pathways regulate programs of gene expression is to identify their direct target genes and to determine the specific components of the transcriptional machinery that are recruited to these genes in response to regulatory signals. To support these goals, the Transcriptional Genomics Core will provide three complementary services to PPG investigators;conventional gene expression (Chip) microarray analysis, recently developed genomic (ChIPChip) microarray analysis, and associated Bioinformatics support for experimental design oversight and data analysis. Conventional expression analysis will utilize commercially available microarrays (e.g., Affymetrix, Agilent and Illumina microarrays). Recent progress in combining the use of chromatin immunoprecipitation (ChIP) assays with DMA microarrays has allowed genome-wide analysis of transcription factor localization to specific promoter sequences in living cells. The PPG Transcriptional Genomics Core will fabricate murine intergenic/promoter microarrays to allow genome-wide location analysis of PPARs, NCoR, SMRT, and other transcription factors of relevance to this application. Effective utilization of genome-wide approaches requires an understanding of the strengths and limitations of these technologies, particularly with respect to sources of error and the number of experimental replicates that are required to develop gene lists at defined and acceptable false positive and false negative rates. Personnel within the PPG Transcriptional Genomics Core will interact with scientists within each of the Projects to provide experimental design oversight focused on these issues. Once microarray experiments are performed and raw data is collected, the Transcriptional Genomics Core will utilize standard tools to develop gene lists at specified levels of confidence and perform secondary analysis (e.g., Gene Ontology analysis, mapping to KEGG pathways, etc.). The Transcriptional Genomics Core will provide a database infrastructure for data storage and retrieval to allow integration of data collected across the PPG and the application of more sophisticated bioinformatics approaches outlined in each of the Projects.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
La Jolla
United States
Zip Code
van der Valk, Fleur M; Bekkering, Siroon; Kroon, Jeffrey et al. (2016) Oxidized Phospholipids on Lipoprotein(a) Elicit Arterial Wall Inflammation and an Inflammatory Monocyte Response in Humans. Circulation 134:611-24
Zhao, Xuan; Hirota, Tsuyoshi; Han, Xuemei et al. (2016) Circadian Amplitude Regulation via FBXW7-Targeted REV-ERBα Degradation. Cell 165:1644-57
Wang, Junjian; Zou, June X; Xue, Xiaoqian et al. (2016) ROR-γ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer. Nat Med 22:488-96
Verbeek, Rutger; Boekholdt, S Matthijs; Stoekenbroek, Robert M et al. (2016) Population and assay thresholds for the predictive value of lipoprotein (a) for coronary artery disease: the EPIC-Norfolk Prospective Population Study. J Lipid Res 57:697-705
Yang, Xiaohong; Lee, Sang-Rok; Choi, Yun-Seok et al. (2016) Reduction in lipoprotein-associated apoC-III levels following volanesorsen therapy: phase 2 randomized trial results. J Lipid Res 57:706-13
Gordts, Philip L S M; Nock, Ryan; Son, Ni-Huiping et al. (2016) ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors. J Clin Invest 126:2855-66
Wall, Christopher E; Yu, Ruth T; Atkins, Anne R et al. (2016) Nuclear receptors and AMPK: can exercise mimetics cure diabetes? J Mol Endocrinol 57:R49-58
Liu, Weilin; Struik, Dicky; Nies, Vera J M et al. (2016) Effective treatment of steatosis and steatohepatitis by fibroblast growth factor 1 in mouse models of nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A 113:2288-93
Ley, Klaus (2016) 2015 Russell Ross Memorial Lecture in Vascular Biology: Protective Autoimmunity in Atherosclerosis. Arterioscler Thromb Vasc Biol 36:429-38
Miller, Yury I; Shyy, John Y-J (2016) Context-Dependent Role of Oxidized Lipids and Lipoproteins in Inflammation. Trends Endocrinol Metab :

Showing the most recent 10 out of 113 publications