Therapeutic regeneration of diseased or damaged myocardium with pluripotent stem (PS) cells depends on the ability to efficiently pre-differentiate PS cells in vitro to specialized endpoints within the coronary vascular and cardiomyocyte lineages. The overall objective of this PPG is to elucidate mechanisms by which homogeneous populations of cardiomyogenic and coronary vascular cells can be induced in a fashion compatible with therapeutic transplantation. This objective will be approached by adhering to an over-riding theme, based on the interplay between endoderm and mesoderm lineages during embryonic development, that specific endodermal lineages induce differentiation of the cardiomyogenic and proepicardium-derived coronary vascular lineages. Subprojects 1 and 4 will focus on how endoderm-secreted growth factors mediate induction of hESCs into Nkx-2.5-positive and Islet 1-positive cardiomyocyte progenitors, while Subproject 2 focuses on how transcription factors mediate these lineage decisions. This will be complemented by Subproject 3 which will investigate endoderm's role during specification of the proepicardium and its progeny which includes coronary endothelial and smooth muscle coronary vascular lineages, in pluripotent ESCs. Synergy created by these interacting subprojects will facilitate the generation of hESC-derived cardiomyogenic and coronary vascular cells that are suitable for transplantation into infarcted hearts of animal models. Using a combination of these cells which confers optimal regeneration, transplantation refinements including effects of reperfusion, numbers of transplanted cells and timing of transplantation will be evaluated in terms of functional outcomes assessed by echocardiographic and ventricular pressure measurements, as well as by histological outcomes with the objective of engrafting damaged myocardium with a vascularized, beating syncytium of cardiomyocytes that restores cardiac function. Success achieving these tasks will be prmoted by synergy provided from Administrative (A), ES Cell (B), Cardiovascular Physiology (C) and Histology &Imaging (D) Cores

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Program Officer
Schramm, Charlene A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Medical College of Wisconsin
Anatomy/Cell Biology
Schools of Medicine
United States
Zip Code
Colunga, Thomas; Dalton, Stephen (2018) Building Blood Vessels with Vascular Progenitor Cells. Trends Mol Med 24:630-641
Garitaonandia, Ibon; Amir, Hadar; Boscolo, Francesca Sesillo et al. (2015) Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions. PLoS One 10:e0118307
Kolander, Kurt D; Holtz, Mary L; Cossette, Stephanie M et al. (2014) Epicardial GATA factors regulate early coronary vascular plexus formation. Dev Biol 386:204-15
Lakshmikanthan, Sribalaji; Zieba, Bartosz J; Ge, Zhi-Dong et al. (2014) Rap1b in smooth muscle and endothelium is required for maintenance of vascular tone and normal blood pressure. Arterioscler Thromb Vasc Biol 34:1486-94
Mallanna, Sunil K; Duncan, Stephen A (2013) Differentiation of hepatocytes from pluripotent stem cells. Curr Protoc Stem Cell Biol 26:Unit 1G.4.
Gundry, Rebekah L; Riordon, Daniel R; Tarasova, Yelena et al. (2012) A cell surfaceome map for immunophenotyping and sorting pluripotent stem cells. Mol Cell Proteomics 11:303-16
Sepac, Ana; Si-Tayeb, Karim; Sedlic, Filip et al. (2012) Comparison of cardiomyogenic potential among human ESC and iPSC lines. Cell Transplant 21:2523-30
Van Orman, Jordan R; Si-Tayeb, Karim; Duncan, Stephen A et al. (2012) Induction of cardiomyogenesis in human embryonic stem cells by human embryonic stem cell-derived definitive endoderm. Stem Cells Dev 21:987-94
Fisher, Joseph B; Kim, Min-Su; Blinka, Steven et al. (2012) Stress-induced cell-cycle activation in Tip60 haploinsufficient adult cardiomyocytes. PLoS One 7:e31569
Cayo, Max A; Cai, Jun; DeLaForest, Ann et al. (2012) JD induced pluripotent stem cell-derived hepatocytes faithfully recapitulate the pathophysiology of familial hypercholesterolemia. Hepatology 56:2163-71

Showing the most recent 10 out of 14 publications