The lipin proteins (lipin-1, lipin-2, and lipin-3) are critical for triacylglycerol (TAG) metabolism, a key theme of our Program Project. Lipin proteins have phosphatidate phosphatase (PAP) enzyme activity and catalyze the penultimate step in TAG synthesis, converting phosphatidic acid to diacylglycerol. Lipins also interact with transcriptional regulators to modulate gene expression. Lipin-1 expression levels and activity influence adiposity, insulin resistance, liver and muscle lipid homeostasis, energy expenditure, and peripheral nerve myelination. The physiological roles of lipin-2 and lipin-3 are much less well characterized. Human lipin-2 deficiency causes Majeed Syndrome, which is distinguished by bone inflammation and anemia. The mechanism for this disease is unknown and highlights the need for a better understanding ofthe physiology and pathophysiology of lipin proteins. Virtually nothing is known about the physiological role of lipin-3. Our proposal is based on three discoveries that we have made regarding the biological roles of lipin-2 and iipin-3 using our lipin-deficient mouse models. The first is that lipin-2 knockout mice have abnormalities in the bone growth plate, and lipin-2 is localized to cells that populate the growth platethe chondrocytes.
In Aim 1 we will define the role of lipin-2 in chondrocyte differentiation and determine the mechanisms underlying bone abnormalities associated with lipin-2 deficiency. The findings may provide fresh insights into the pathogenesis of bone abnormalities in Majeed syndrome. A second discovery is that adipose tissue PAP activity and TAG accumulation are determined not only by lipin-1, but also by lipin-3. We have mapped a physical interaction between lipin-1 and lipin-3, suggesting a mechanistic basis forthe requirement of both lipins in adipose tissue. Our findings regarding the role of lipin-3and the interaction between lipin-1 and lipin-3in adipocyte function are likely to be relevant to human adipose tissue biology, since the balance between lipin-1 and lipin-3 may influence the differential susceptibility of lipin-1-deficient mice and humans to overt lipodystrophy. A third discovery is that lipin-2 and lipin-3 each contribute to PAP activity in the small intestine, and that the loss of both proteins leads to a dramatic accumulation of cytosolic TAG droplets in enterocytes. We propose that lipin-2 and lipin-3 PAP activities are important for intestinal lipid homeostasis and chylomicron assembly. The implication of lipins in this process is novel given that intestinal TAG synthesis has been attributed primarily to the monoacylglycerol pathway. Our studies will shed new light on a fundamental process of lipid metabolism in the small intestine. .

Public Health Relevance

The regulation of lipid synthesis and fat storage are key determinants of conditions associated with human disease, including obesity, diabetes, heart disease and metabolic syndrome. A better understanding ofthe genes and processes involved may contribute to the design of therapeutic interventions

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHL1-PPG-R (O1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Los Angeles
United States
Zip Code
Beigneux, Anne P; Fong, Loren G; Bensadoun, André et al. (2015) GPIHBP1 missense mutations often cause multimerization of GPIHBP1 and thereby prevent lipoprotein lipase binding. Circ Res 116:624-32
Bensadoun, André; Mottler, Charlene D; Pelletier, Chris et al. (2014) A new monoclonal antibody, 4-1a, that binds to the amino terminus of human lipoprotein lipase. Biochim Biophys Acta 1841:970-6
Csaki, Lauren S; Dwyer, Jennifer R; Li, Xia et al. (2014) Lipin-1 and lipin-3 together determine adiposity in vivo. Mol Metab 3:145-54
Turlo, Kirsten; Leung, Calvin S; Seo, Jane J et al. (2014) Equivalent binding of wild-type lipoprotein lipase (LPL) and S447X-LPL to GPIHBP1, the endothelial cell LPL transporter. Biochim Biophys Acta 1841:963-9
Goulbourne, Chris N; Gin, Peter; Tatar, Angelica et al. (2014) The GPIHBP1-LPL complex is responsible for the margination of triglyceride-rich lipoproteins in capillaries. Cell Metab 19:849-60
Sha, Haibo; Sun, Shengyi; Francisco, Adam B et al. (2014) The ER-associated degradation adaptor protein Sel1L regulates LPL secretion and lipid metabolism. Cell Metab 20:458-70
Zhang, Peixiang; Verity, M Anthony; Reue, Karen (2014) Lipin-1 regulates autophagy clearance and intersects with statin drug effects in skeletal muscle. Cell Metab 20:267-79
Adeyo, Oludotun; Allan, Bernard B; Barnes 2nd, Richard H et al. (2014) Palmoplantar keratoderma along with neuromuscular and metabolic phenotypes in Slurp1-deficient mice. J Invest Dermatol 134:1589-98
Plengpanich, Wanee; Young, Stephen G; Khovidhunkit, Weerapan et al. (2014) Multimerization of glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) and familial chylomicronemia from a serine-to-cysteine substitution in GPIHBP1 Ly6 domain. J Biol Chem 289:19491-9
Jiang, Haibo; Goulbourne, Chris N; Tatar, Angelica et al. (2014) High-resolution imaging of dietary lipids in cells and tissues by NanoSIMS analysis. J Lipid Res 55:2156-66

Showing the most recent 10 out of 62 publications