The In Vitro Models and Cell Culture Core continues to function as a resource for all projects in the PPG. It has provided relevant cell cultures to each of the projects and has provided cells, tissues, resources and expertise to collaborators around the world. Listed below are some ofthe contributions ofthe Core to the PPG. 1. Generation of in vitro models of pig airway epithelia. a. in vitro models of pig airway epithelia. b. in vitro models of pig alveolar epithelia. b. in vitro models of human and mouse airway epithelia for comparative studies. 2. Characterization of in vitro models and native epithelia. a. Electrophysiologic analysis. b. Morphologic evaluation. c. Expression profiles, mRNA and microRNA 3. Development of pig airway cell lines that grow as differentiated airway epithelia. 4. Research and development of new methods and models for the study of pig airway epithelia and submucosal glands. a. Optimize conditions for pig airway epithelia cultures. b. Develop methods for cultures of pig airway epithelia with goblet cell metaplasia. 5. Developing airway epithelia with siRNA knock down of genes. 6. Handling, characterizing and distribution of pig methacholine stimulated ASL. 7. Teaching investigators at the University of lowa and other institutions the methods for developing in vitro model systems. 8. Record keeping relevant to tissue acquisition, cell culture and phenotype. 9. Obtaining approval and record keeping for cell and animal studies from regulatory committees. 10. Provision of cells, plasmids, and viruses to investigators at other institutions. This Core brings expertise of a highly motivated and technically sophisticated staff to the benefit of PPG investigators. As a result, it allows investigators of the individual projects to focus their unique expertise on questions of high relevance to CF

Public Health Relevance

The In Vitro Models and Cell Culture Core functions as a resource for all projects in the PPG. It has provided relevant cell cultures to each of the projects and has provided cells^ tissues, resources and expertise to collaborators around the world.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
2P01HL091842-06
Application #
8600369
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-09-19
Budget End
2014-06-30
Support Year
6
Fiscal Year
2013
Total Cost
$71,874
Indirect Cost
$24,275
Name
University of Iowa
Department
Type
DUNS #
062761671
City
Iowa City
State
IA
Country
United States
Zip Code
52242
Weldon, Sinéad; McNally, Paul; McAuley, Danny F et al. (2014) miR-31 dysregulation in cystic fibrosis airways contributes to increased pulmonary cathepsin S production. Am J Respir Crit Care Med 190:165-74
Derscheid, Rachel J; van Geelen, Albert; Berkebile, Abigail R et al. (2014) Increased concentration of iodide in airway secretions is associated with reduced respiratory syncytial virus disease severity. Am J Respir Cell Mol Biol 50:389-97
Hoegger, Mark J; Awadalla, Maged; Namati, Eman et al. (2014) Assessing mucociliary transport of single particles in vivo shows variable speed and preference for the ventral trachea in newborn pigs. Proc Natl Acad Sci U S A 111:2355-60
Berkebile, Abigail R; McCray Jr, Paul B (2014) Effects of airway surface liquid pH on host defense in cystic fibrosis. Int J Biochem Cell Biol 52:124-9
Awadalla, Maged; Miyawaki, Shinjiro; Abou Alaiwa, Mahmoud H et al. (2014) Early airway structural changes in cystic fibrosis pigs as a determinant of particle distribution and deposition. Ann Biomed Eng 42:915-27
Reznikov, Leah R; Abou Alaiwa, Mahmoud H; Dohrn, Cassie L et al. (2014) Antibacterial properties of the CFTR potentiator ivacaftor. J Cyst Fibros 13:515-9
Hoegger, Mark J; Fischer, Anthony J; McMenimen, James D et al. (2014) Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science 345:818-22
Sun, Xingshen; Olivier, Alicia K; Liang, Bo et al. (2014) Lung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets. Am J Respir Cell Mol Biol 50:502-12
Gibson-Corley, K N; Olivier, A K; Meyerholz, D K (2013) Principles for Valid Histopathologic Scoring in Research. Vet Pathol :
Ramachandran, Shyam; Karp, Philip H; Osterhaus, Samantha R et al. (2013) Post-transcriptional regulation of cystic fibrosis transmembrane conductance regulator expression and function by microRNAs. Am J Respir Cell Mol Biol 49:544-51

Showing the most recent 10 out of 38 publications