Diabetes in the United States today is an explosive major public health issue that directly impacts cardiovascular morbidity and mortality. One major reason for these devastating cardiovascular complications is that diabetics exhibit impaired collateral vessel development. Formation of functional collateral blood vessels is the primary adaptive mechanism in humans to blood flow obstruction. In this project we will explore the role of advanced glycation end products and the specific receptor for advanced glycation end products (RAGE) in inhibition of collateral blood vessel formation. We have developed exciting preliminary data showing that advanced glycation end products dramatically inhibit collateral vessel formation. Moreover, we have presented preliminary data that demonstrate a central role for RAGE signaling in monocytes in this process. The proposed studies will first examine the overall role of RAGE in inhibiting collateral vessel formation. Subsequent aims will study the specific contributions of RAGE in monocytes and T cells as these two inflammatory cells types have been shown by us and others to be critical for the formation of collateral blood vessels. Additional studies will examine the role of reactive oxygen species as crucial signaling intermediates in RAGE signal transduction in both monocytes and T cells. Through these studies, we will develop a comprehensive and critical assessment of the role of RAGE signaling in inflammatory cells and the subsequent impact on collateral vessel formation.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL095070-05
Application #
8507557
Study Section
Special Emphasis Panel (ZHL1-PPG-A)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
5
Fiscal Year
2013
Total Cost
$357,978
Indirect Cost
$109,735
Name
Emory University
Department
Type
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Lee, Minyoung; San Martín, Alejandra; Valdivia, Alejandra et al. (2016) Redox-Sensitive Regulation of Myocardin-Related Transcription Factor (MRTF-A) Phosphorylation via Palladin in Vascular Smooth Muscle Cell Differentiation Marker Gene Expression. PLoS One 11:e0153199
Simmons, Rachel D; Kumar, Sandeep; Thabet, Salim Raid et al. (2016) Omics-based approaches to understand mechanosensitive endothelial biology and atherosclerosis. Wiley Interdiscip Rev Syst Biol Med 8:378-401
Montaniel, Kim Ramil C; Harrison, David G (2016) Is Hypertension a Bone Marrow Disease? Circulation 134:1369-1372
Hansen, Laura M; Gupta, Divya; Joseph, Giji et al. (2016) The receptor for advanced glycation end products impairs collateral formation in both diabetic and non-diabetic mice. Lab Invest :
Simmons, Rachel D; Kumar, Sandeep; Jo, Hanjoong (2016) The role of endothelial mechanosensitive genes in atherosclerosis and omics approaches. Arch Biochem Biophys 591:111-31
Griendling, Kathy K; Touyz, Rhian M; Zweier, Jay L et al. (2016) Measurement of Reactive Oxygen Species, Reactive Nitrogen Species, and Redox-Dependent Signaling in the Cardiovascular System: A Scientific Statement From the American Heart Association. Circ Res 119:e39-75
Paredes, Felipe; Parra, Valentina; Torrealba, Natalia et al. (2016) HERPUD1 protects against oxidative stress-induced apoptosis through downregulation of the inositol 1,4,5-trisphosphate receptor. Free Radic Biol Med 90:206-18
Fernández Esmerats, Joan; Heath, Jack; Jo, Hanjoong (2016) Shear-Sensitive Genes in Aortic Valve Endothelium. Antioxid Redox Signal 25:401-14
Di Marco, Elyse; Gray, Stephen P; Kennedy, Kit et al. (2016) NOX4-derived reactive oxygen species limit fibrosis and inhibit proliferation of vascular smooth muscle cells in diabetic atherosclerosis. Free Radic Biol Med 97:556-67
Rathan, Swetha; Ankeny, Casey J; Arjunon, Sivakkumar et al. (2016) Identification of side- and shear-dependent microRNAs regulating porcine aortic valve pathogenesis. Sci Rep 6:25397

Showing the most recent 10 out of 91 publications