Parenchymal arterioles (PAs) play a critical role in assuring that appropriate local cerebral blood flow and perfusion pressure are maintained under a variety of conditions. This essential physiological function is regulated by tight communication among the various cells that form the cerebrovascular unit (endothelium, smooth muscle, and astrocytes) and clearly involves the dynamic regulation of intracellular [Ca^"*] in each cell type. The focus of this project is on parenchymal arteriolar smooth muscle cell calcium (Ca^*) signaling, which is the ultimate determinant of myocyte excitability, vasomotor tone, and blood flow in the microcirculation of the brain. Voltage-dependent Ca^* (Cav) channels are central integrators of both vasodilator and vasoconstrictor stimuli in the cerebral circulation. In addition, Transient Receptor Potential (TRP) channels transduce vasoactive signals, including intravascular pressure and receptor activation, to directly and indirectly modulate intracellular Ca^* in the vasculature. However, virtually nothing is known about the functional contributions of these channels in PAs. Thus the overarching goal of this project is to reveal the molecular mechanisms of vascular control of PAs involving Cav and TRP channels. Based on our preliminary data we have formulated a model of excitation-contraction coupling in arteriolar smooth muscle in which E-C coupling is facilitated in two ways: 1) High activity of Ca^* entry pathways mediated or modulated by Cav, TRPC6, TRPM4, and TRPV4 channels, and by PCK, and 2) suppressed negative feedback input normally provided by Ca^* spark and BK channel activity. To assess the specific roles of Cav and TRP channels in generating Ca^* signals, Ca^* will be measured with fluorescent dyes using confocal and TIRF microscopy, approaches developed or implemented by our team. Vasomotor function will be measured in isolated, pressurized parenchymal arteriole segments, and ion channel function will be studied using patch clamp approaches. Information and insights gained will be coordinated with studies focused on normal endothelial cell function in PAs (M. Nelson, Project 1) and used to understand how arteriolar smooth muscle function, in general, and the expression and activity of various vasoconstrictor mechanisms, in particular, may be altered following ischemia and reperfusion (M. Cipolla, Project 3) and subarachnoid hemorrhage (G. Wellman, Project 4). Elucidation of the roles of TRP channels and their interaction with Cav channels in smooth muscle function and dysfunction as detailed in this project represents a unique opportunity to define a new set of pharmacologically relevant drug targets aimed at treating and preventing cerebrovascular disorders.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL095488-05
Application #
8722004
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
5
Fiscal Year
2014
Total Cost
$377,964
Indirect Cost
$106,069
Name
University of Vermont & St Agric College
Department
Type
DUNS #
066811191
City
Burlington
State
VT
Country
United States
Zip Code
05405
Wallace, Kedra; Tremble, Sarah M; Owens, Michelle Y et al. (2015) Plasma from patients with HELLP syndrome increases blood-brain barrier permeability. Reprod Sci 22:278-84
Cipolla, Marilyn J; Sweet, Julie; Chan, Siu-Lung et al. (2014) Increased pressure-induced tone in rat parenchymal arterioles vs. middle cerebral arteries: role of ion channels and calcium sensitivity. J Appl Physiol (1985) 117:53-9
Longden, Thomas A; Dabertrand, Fabrice; Hill-Eubanks, David C et al. (2014) Stress-induced glucocorticoid signaling remodels neurovascular coupling through impairment of cerebrovascular inwardly rectifying K+ channel function. Proc Natl Acad Sci U S A 111:7462-7
Dunn, Kathryn M; Nelson, Mark T (2014) Neurovascular signaling in the brain and the pathological consequences of hypertension. Am J Physiol Heart Circ Physiol 306:H1-14
Cipolla, Marilyn J; Chan, Siu-Lung; Sweet, Julie et al. (2014) Postischemic reperfusion causes smooth muscle calcium sensitization and vasoconstriction of parenchymal arterioles. Stroke 45:2425-30
Mingin, Gerald C; Peterson, Abbey; Erickson, Cuixia Shi et al. (2014) Social stress induces changes in urinary bladder function, bladder NGF content, and generalized bladder inflammation in mice. Am J Physiol Regul Integr Comp Physiol 307:R893-900
Schreurs, Malou P H; Cipolla, Marilyn J (2014) Cerebrovascular dysfunction and blood-brain barrier permeability induced by oxidized LDL are prevented by apocynin and magnesium sulfate in female rats. J Cardiovasc Pharmacol 63:33-9
Krishnamoorthy, Gayathri; Sonkusare, Swapnil K; Heppner, Thomas J et al. (2014) Opposing roles of smooth muscle BK channels and ryanodine receptors in the regulation of nerve-evoked constriction of mesenteric resistance arteries. Am J Physiol Heart Circ Physiol 306:H981-8
Mercado, Jose; Baylie, Rachael; Navedo, Manuel F et al. (2014) Local control of TRPV4 channels by AKAP150-targeted PKC in arterial smooth muscle. J Gen Physiol 143:559-75
Hill-Eubanks, David C; Gonzales, Albert L; Sonkusare, Swapnil K et al. (2014) Vascular TRP channels: performing under pressure and going with the flow. Physiology (Bethesda) 29:343-60

Showing the most recent 10 out of 42 publications