Obstructive sleep apnea (OSA) is characterized by recurrent collapse of the upper airway during sleep. The consequent asphyxia provokes immediate respiratory responses that comprise increased central respiratory drive as well as activation of ainway dilator muscles, which we term respiratory arousal and is directly related to the severity of the disease. Our ultimate goal is to find treatments to maximize respiratory arousal in patients. Our strategy is to determine the neural mechanisms for respiratory arousal. We hypothesize that components of the parabrachial nucleus (PB), including the Kolliker-Fuse (KF), play a key role in hypercapnic respiratory arousal. We suspect that the KF is important for driving an array of airway dilatory muscles in the tongue, pharynx and larynx under conditions of high respiratory drive such as hypercapnia and aides in matching airway dilator muscle activity to the negative pressure generated by ventilatory effort to ensure airway patency. We hypothesize that glutamatergic PB-KF neurons project to and activate targets in the upper ainway motor and respective premotor nuclei and that these activities are necessary to achieve normal increases in ventilatory and upper airway dilator muscle output in response to hypercapnia.
Our specific aims i nclude using a genetically modified mouse in which loxP sjtes flank the gene for the vesicular glutamate transporter type 2 (vglut2), the one contained in PB-KF neurons. We will us a virally-derived vector (/ AV-cre) to focally transfect and consequently delete vglut2 from PB-KF neurons and test the effects on respiratory arousal responses to hypercapnia in unanesthetized, naturally sleeping animals. In addition, we will use conventional retrograde tracing in combination with Fos immunohistochemistry to determine the anatomical location and neural connections of the PB-KF neurons activated by hypercapnia and the chemosensitive neurons that provide excitatory input to the PB-KF. In in vitro slices we will determine if KF neurons are intrinsically chemosensitive. In all, these experiments will demonstrate the functional role for glutamate release from PB-KF neurons in respiratory responses to hypercapnia as well as the relevant neurons and targets and the sources of chemosensory input.

Public Health Relevance

The findings from these studies will delineate brain regions that directly influence the severity of OSA. The ultimate goal of our work is to develop treatments for OSA and other conditions that involve hypoventilation during sleep.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL095491-03
Application #
8377823
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2012-03-01
Budget End
2013-02-28
Support Year
3
Fiscal Year
2012
Total Cost
$376,867
Indirect Cost
$160,276
Name
Beth Israel Deaconess Medical Center
Department
Type
DUNS #
071723621
City
Boston
State
MA
Country
United States
Zip Code
02215
Scammell, Thomas E; Arrigoni, Elda; Lipton, Jonathan O (2017) Neural Circuitry of Wakefulness and Sleep. Neuron 93:747-765
Yang, Chun; McKenna, James T; Brown, Ritchie E (2017) Intrinsic membrane properties and cholinergic modulation of mouse basal forebrain glutamatergic neurons in vitro. Neuroscience 352:249-261
Landry, Shane A; Joosten, Simon A; Sands, Scott A et al. (2017) Response to a combination of oxygen and a hypnotic as treatment for obstructive sleep apnoea is predicted by a patient's therapeutic CPAP requirement. Respirology 22:1219-1224
Marques, Melania; Genta, Pedro R; Sands, Scott A et al. (2017) Effect of Sleeping Position on Upper Airway Patency in Obstructive Sleep Apnea Is Determined by the Pharyngeal Structure Causing Collapse. Sleep 40:
Azarbarzin, Ali; Sands, Scott A; Taranto-Montemurro, Luigi et al. (2017) Estimation of Pharyngeal Collapsibility During Sleep by Peak Inspiratory Airflow. Sleep 40:
Kroeger, Daniel; Ferrari, Loris L; Petit, Gaetan et al. (2017) Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice. J Neurosci 37:1352-1366
Rukhadze, Irma; Carballo, Nancy J; Bandaru, Sathyajit S et al. (2017) Catecholaminergic A1/C1 neurons contribute to the maintenance of upper airway muscle tone but may not participate in NREM sleep-related depression of these muscles. Respir Physiol Neurobiol 244:41-50
Kim, Bowon; Kocsis, Bernat; Hwang, Eunjin et al. (2017) Differential modulation of global and local neural oscillations in REM sleep by homeostatic sleep regulation. Proc Natl Acad Sci U S A 114:E1727-E1736
Kaur, Satvinder; Wang, Joshua L; Ferrari, Loris et al. (2017) A Genetically Defined Circuit for Arousal from Sleep during Hypercapnia. Neuron 96:1153-1167.e5
Geerling, Joel C; Yokota, Shigefumi; Rukhadze, Irma et al. (2017) K├Âlliker-Fuse GABAergic and glutamatergic neurons project to distinct targets. J Comp Neurol 525:1844-1860

Showing the most recent 10 out of 173 publications